

MICRO DATA AND MACRO TECHNOLOGY

GROUP 10

AUTHOR: EZRA OBERFIELD

Department of Economics

• Princeton University

Main Academic Positions

- Assistant Professor of Economics, Princeton University, 2013 present
- Economist, Federal Reserve Bank of Chicago, 2010 2013

AUTHOR: DEVESH RAVAL

Main Academic Directions

Areas of specialization Industrial
 Organization; Productivity; Applied
 Econometrics.

LABOR'S SHARE HAS FALLEN

WHY HAS THE LABOR SHARE FALLEN?

Supply

- Piketty: Increased capital accumulation
- Karabarbounis & Neiman: Investment-specific technical change

Demand

Automation / Offshoring

Key is the Aggregate Elasticity of Substitution:

$$\sigma^{
m agg} \equiv rac{{
m d} \ln K/L}{{
m d} \ln w/r}$$

AGGREGATE CAPITAL-LABOR ELASTICITY OF SUBSTITUTION

Impossibility Theorem of Diamond, McFadden, & Rodriguez (1978)

Cannot identify σ or bias of tech. with time series of quantities and prices Need variation in prices that is independent of technology

Parametric assumptions on the bias of technical change

No bias/constant bias

METHOD 2: USE MICRO DATA

More plausibly exogenous diferences in prices

Houthakker (1955) micro and macro elasticities can be very different an economy of Leontief micro units can have a Cobb—Douglas aggregate production function.

Typical estimate: 0.4-0.5

Identies a micro elasticity of substitution

$$Y_i = \left[\left(A_i K_i
ight)^{rac{\sigma-1}{\sigma}} + \left(B_i L_i
ight)^{rac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$

$$\sigma^{
m agg} \equiv rac{{
m d} \ln K/L}{{
m d} \ln w/r}$$

$$K \equiv \sum_{i \in I} K_i \;\; L \equiv \sum_{i \in I} L_i$$

- a large set of plants I
- constant elasticity of substitution σ
- CES production function
- Capital K_i labor L_i
- Capital-augmenting productivity A_i
- Labor-augmenting productivity B_i

$$lpha_i \equiv rac{rK_i}{rK_i + wL_i} \quad lpha \equiv rac{rK}{rK + wL} \quad lpha = \sum_{i \in I} lpha_i heta_i \quad heta_i \equiv rac{rK_i + wL_i}{rK + wL}$$

$$\sigma-1=rac{\mathrm{d}\ln rK_i/wL_i}{\mathrm{d}\ln w/r}=rac{\mathrm{d}\ln lpha_i/(1-lpha_i)}{\mathrm{d}\ln w/r}=rac{1}{lpha_i(1-lpha_i)}rac{\mathrm{d}lpha_i}{\mathrm{d}\ln w/r}$$

$$\sigma^{
m agg} - 1 = rac{\mathrm{d} \ln r K/w L}{\mathrm{d} \ln w/r} = rac{\mathrm{d} \ln lpha/(1-lpha)}{\mathrm{d} \ln w/r} = rac{1}{lpha(1-lpha)} rac{\mathrm{d} lpha}{\mathrm{d} \ln w/r}$$

$$\sigma^{\mathrm{agg}} - 1 = rac{1}{lpha(1-lpha)} \sum_{i \in I} lpha_i (1-lpha_i) (\sigma-1) heta_i + rac{1}{lpha(1-lpha)} \sum_{i \in I} lpha_i heta_i rac{\mathrm{d} \ln heta_i}{\mathrm{d} \ln w/r}$$

- Dixit–Stiglitz preference
- monopolistically competitive
- common elasticity of demand $\varepsilon > 1$

$$h_i(\mathbf{p},u) = rac{\partial e(\mathbf{p},u)}{\partial p_i}$$

$$\left(\sum_{i\in I} D_i^{rac{1}{arepsilon}} Y_i^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}}$$

$$rac{\mathrm{d} \ln heta_i}{\mathrm{d} \ln w/r} = (arepsilon - 1)(lpha_i - lpha)$$

$$\sigma^{
m agg} = (1 - \chi)\sigma + \chi \varepsilon$$

aggregate EoS plant level EoS

plant level elasticity of demand

σ: substitution within plants

 σ^{agg} : substitution across plants

\varepsilon: heterogeneity in capital intensity

X: proportional to variance of capital shares

$$\chi \equiv \sum_{i \in I} rac{\left(lpha_i - lpha
ight)^2}{lpha(1 - lpha)} heta_i$$

2.2 BASELINE MODEL

$$F_{ni}(K_{ni},L_{ni},M_{ni}) = \left(\left[\left(A_{ni}K_{ni}
ight)^{rac{\sigma_{n}-1}{\sigma_{n}}} + \left(B_{ni}L_{ni}
ight)^{rac{\sigma_{n}-1}{\sigma_{n}}}
ight]^{rac{\sigma_{n}-1}{\sigma_{n}-1}rac{n-1}{\zeta_{n}}} + \left(C_{ni}M_{ni}
ight)^{rac{\zeta_{n}-1}{\zeta_{n}}}
ight)^{rac{\zeta_{n}}{L_{n}-1}}$$

$$Y \equiv \left[\sum_{n \in N} D_n^{rac{1}{\eta}} Y_n^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}} Y_n \equiv \left(\sum_{i \in I_n} D_{ni}^{rac{1}{arepsilon_n}} Y_{ni}^{rac{arepsilon_{n-1}}{arepsilon_{n-1}}}
ight)^{rac{arepsilon_n}{arepsilon_{n-1}}}
ight)^{rac{arepsilon_n}{arepsilon_{n-1}}}
ight.$$
• Plant i in industry n produces with the production function elasticity of substitution between capital and labor : σn

$$egin{aligned} Y_{ni} &= F_{ni}(K_{ni}, L_{ni}, M_{ni}) \ &= \max \quad P_{ni}Y_{ni} - rK_{ni} - wL_{ni} - qM_{ni} \end{aligned}$$

 $P_{ni}, Y_{ni}, K_{ni}, L_{ni}, M_{ni}$

- elasticity of substitution between materials and its capitallabor bundle : ζn
- Each plant in industry n faces a demand curve with constant elasticity en
- q: price of materials, each plant maximizes profit
- subject to the technological constraint

2.2 BASELINE MODEL

Demand curve

$$Y_{ni} = Y_n (P_{ni}/P_n)^{-arepsilon_n}$$

$\sigma_n^N \equiv rac{\mathrm{d} \ln K_n/L_n}{\mathrm{d} \ln w/r}$

$$lpha_{ni} = rac{rK_{ni}}{rK_{ni} + wL_{ni}}$$

$$P_n \equiv \left(\sum_{i \in I_n} D_{ni} P_{ni}^{1-arepsilon_n}
ight)^{rac{1}{1-arepsilon_n}}$$

$$lpha_{ni} = rac{rK_{ni}}{rK_{ni} + wL_{ni}} \qquad heta_{ni} = rac{rK_{ni} + wL_{ni}}{rK_n + wL_n} \qquad s_{ni}^M \equiv rac{qM_{ni}}{rK_{ni} + wL_{ni} + qM_{ni}}$$

2.3 PROPOSITIONS: 1 & 2

PROPOSITION 1: Under Assumption 1, the industry elasticity of substitution is

$$\sigma_n^N = (1-\chi_n)\sigma_n + \chi_nig[ig(1-ar{s}_n^Mig)arepsilon_n + ar{s}_n^M\zeta_nig]$$

$$egin{aligned} \chi_n = \sum_{i \in I_n} rac{(lpha_{ni} - lpha_n)^2}{lpha_n (1 - lpha_n)} heta_{ni} & ar{s}_n^M = rac{\sum_{i \in I_n} (lpha_{ni} - lpha_n) ig(lpha_{ni} - lpha^Mig) heta_{ni} s_{ni}^M}{\sum_{i \in I_n} (lpha_{ni} - lpha_n) ig(lpha_{ni} - lpha^Mig) heta_{ni}} \end{aligned}$$

PROPOSITION 2: The aggregate elasticity between capital and labor

$$\sigma^{
m agg} = (1-\chi^{
m agg})ar{\sigma}^N + \chi^{
m agg} \Big[ig(1-ar{s}^Mig)\eta + ar{s}^Mar{\zeta}^N \Big]$$

$$\chi^{
m agg} \equiv \sum_{n \in N} rac{(lpha_n - lpha)^2}{lpha(1 - lpha)} heta_n \qquad ar{s}^M \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha^Mig) heta_n}{\sum_{n' \in N} (lpha_{n'} - lpha) ig(lpha_{n'} - lpha^Mig) heta_n} s_n^M \ ar{\sigma}^N \equiv \sum_{n \in N} rac{lpha_n (1 - lpha_n) heta_n}{\sum_{n' \in N} lpha_{n'} (1 - lpha_{n'}) heta_n} \sigma_n^N \qquad ar{\zeta}^N \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha^Mig) heta_n s_n^M}{\sum_{n' \in N} (lpha_{n'} - lpha) ig(lpha_{n'} - lpha^Mig) heta_n s_n^M} \zeta_n^N \ ar{\zeta}^N \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha^Mig) heta_n s_n^M}{\sum_{n' \in N} (lpha_{n'} - lpha) ig(lpha_{n'} - lpha^Mig) heta_n s_n^M} \zeta_n^N \ ar{\zeta}^N \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha^Mig) heta_n s_n^M}{\sum_{n' \in N} (lpha_{n'} - lpha) ig(lpha_{n'} - lpha^Mig) heta_n s_n^M} \zeta_n^N \ ar{\zeta}^N \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha^Mig) heta_n s_n^M}{\sum_{n' \in N} (lpha_{n'} - lpha) ig(lpha_{n'} - lpha^Mig) heta_n s_n^M} \zeta_n^N \ ar{\zeta}^N \equiv \sum_{n \in N} rac{(lpha_n - lpha) ig(lpha_n - lpha) ig(lpha_n$$

BEFORE EMPIRICAL

Two Propositions throughout the whole article

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n \left[\left(1 - \overline{s}_n^M \right) \varepsilon_n + \overline{s}_n^M \zeta_n \right]$$

$$\sigma^{agg} = (1 - \chi^{agg})\overline{\sigma}^N + \chi^{agg} [(1 - \overline{s}^M)\eta + \overline{s}^M\overline{\zeta}^N]$$

Elasticity: substitution elasticity, demand elasticity

Heterogeneity: capital intensive heterogeneity, intermediate production heterogeneity

BEFORE EMPIRICAL

Two Propositions throughout the whole article

DATA - MICRO DATA ON MANUFACTURING PLANTS

The U.S. Census of Manufactures

every 5 years, 1987 to 2007

Capital costs

Perpetual inventory

Total stock of structures

Equipment capitals

External real rental rate of return: Harper,

Berndt, Wood (1989)

Labor costs

Total salaries and wages at the plant level

Annual Survey of Manufactures (ASM)

1977 to 2007

Capital Statistics

Additionally include machinery rents

Labor costs

Additionally include supplemental labor costs

Benefits

Payrolls

Taxes

Industry definition: Changes from SIC to NAICS in 1997

3.2 MICRO HETEROGENEITY

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \overline{s}_n^M)\varepsilon_n + \overline{s}_n^M \zeta_n]$$

3.2 MICRO HETEROGENEITY

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M \zeta_n]$$

3.3 PLANT-LEVEL ELASTICITY OF SUBSTITUTION

Regression model

$$\log \frac{rK_{nic}}{wL_{nic}} = \beta_n \log w_c + \gamma_n X_{nic} + \epsilon_{nic}$$

$$\beta_n = \frac{\mathrm{d}\log\frac{rK_{nic}}{wL_{nic}}}{\mathrm{d}\log\frac{w_c}{r_c}} = \sigma_n - 1$$

- Cross-sectional data
- Same cost of capital
- Residual wage

3.3 PLANT-LEVEL ELASTICITY OF SUBSTITUTION

Heterogeneity of industrial composition

Industry expanding in employment

$$g_n(t) = \frac{1}{10} \ln(\frac{L_n(t)}{L_n(t-10)})$$

$$Z_j(t) = \sum_{n \in N^S} \omega_{j,n}(t-10)g_n(t)$$

$$Z_j(t) = \sum_{n \in N^S} \omega_{j,n}(t - 10)g_n(t)$$

labor demand ——

d(Labor demand) d(Local expanding in employment)

Heterogeneity of industrial composition

Industry wage premium -

labor supply $\longrightarrow w_i$

$$\sum_{n \in N^S} \widehat{\omega}_{j,n}(t) [v_n(t) - v_n(t - 10)]$$

$$\sum_{n \in N^S} v_n(t) [\widehat{\omega}_{j,n}(t) - \omega_{j,n}(t - 10)]$$

d(Labor supply)

d(Local wage premium)

Short-coming of previous IV: Ignorant of input-output linkages

Better Amenities — lower wage

IV: Measures of local amenities based on **climate** and **geography**

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M\zeta_n]$$

IV ESTIMATES OF THE PLANT CAPITAL-LABOR SUBSTITUTION ELASTICITY

Year	OLS		Bartik	BGS	Amenities		All
1987	0.44(0.04)	0.54(0.03)	0.52(0.04)	0.45(0.09)	0.45(0.07)	0.48(0.06)	0.51(0.04)
1992	0.47(0.03)	0.52(0.03)	0.45(0.04)	0.48(0.04)	0.57(0.06)	0.55(0.05)	0.50(0.03)
1997	0.29(0.05)	0.48(0.04)	0.41 <i>(0.11)</i>	0.36(0.08)	0.28(0.09)	0.40(0.07)	0.41(0.05)
2002	0.31(0.06)	0.48(0.05)	0.31(0.10)	0.37(0.06)	0.33(0.13)	0.42(0.11)	0.42(0.06)
2007	0.45(0.04)	0.58(0.03)	0.51(0.05)	0.56(0.05)	0.49(0.09)	0.53(0.07)	0.54(0.04)
Wage	Pop Census	LBD	LBD	LBD	Pop Census	LBD	LBD

+0.13

0.3 - 0.6

3.3.2 OTHER THREATS TO IDENTIFICATION

Rental rate

Reflect wage

Difference in creditworthiness

Different capital taxes and subsidies

3.3.2 OTHER THREATS TO IDENTIFICATION

ROBUSTNESS CHECKS FOR PLANT CAPITAL-LABOR SUBSTITUTION ELASTICITY

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Separate OLS	Singe OLS (Baseline)	Equipment Capital	Firm FE	State FE	ASM Only	Book Value Capital
1987	0.43	0.44(0.04)	0.45(0.03)	0.57(0.07)	0.39(0.04)	0.40(0.08)	0.42(0.04)
1992	0.48	0.47(0.03)	0.47(0.03)	0.65(0.06)	0.31(0.03)	0.67(0.07)	0.39(0.03)
1997	0.34	0.29(0.05)		0.66(0.06)	0.32(0.05)	0.42(0.09)	0.27(0.05)
2002	0.34	0.31(0.06)		0.59(0.06)	0.41(0.07)	0.52(0.09)	0.22(0.07)
2007	0.38	0.45(0.04)		0.55(0.07)	0.48(0.05)	0.37(0.07)	0.39(0.04)

- Firm-wide wage setting procedures compress wage differences within firms
- Measure error in plant-level capital stock

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \overline{s}_n^M)\varepsilon_n + \overline{s}_n^M\zeta_n]$$

Plant elasticity of substitution between materials and non-materials input

Same regression model

$\log \frac{rK_{nic} + wL_{nic}}{qM_{nic}}$
$= (1 - \zeta)(1 - \alpha_{nic}) \log w_c + \gamma_n X_{nic} + \epsilon_{nic}$

PLANT-LEVEL ELASTICITIES OF SUBSTITUTION

1987	1.03(0.12)
1992	0.83(0.10)
1997	0.69(0.07)
2002	0.78(0.08)
2007	0.57(0.06)

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M \zeta_n]$$

 $[\varepsilon_n]$

Optimal price setting behavior: Profit maximization

$$\frac{\varepsilon}{\varepsilon - 1} = \frac{P}{MC}$$

Elasticity of Demand

 ε_n

Scale Elasticity

$$(1 - \bar{s}_n^M)\varepsilon_n + \bar{s}_n^M\zeta_n$$

$$\sigma_n^N = (1 - \chi_n)\sigma_n + \chi_n [(1 - \overline{s}_n^M)\varepsilon_n + \overline{s}_n^M\zeta_n]$$

Aggregation of industrial elasticity of substitution

$$\sigma^{\text{agg}} = (1 - \chi^{\text{agg}})\bar{\sigma}^N + \chi^{\text{agg}}[(1 - \bar{s}^M)\eta + \bar{s}^M\bar{\zeta}^N]$$

$$\log q_{n,t} = -\eta \log p_{n,t} + \alpha_n + \beta_t + Controls + \varepsilon_n$$

IV: Avg cost as supply shifter

Results:

around 1, set to 1

			Industry Definition	n	
Instrument		4-Digit	2-Digit		
None	0.87(0.02)	0.87(0.02)	0.46(0.03)	0.97 <i>(</i> 0.05 <i>)</i>	-0.07 <i>(0.04)</i>
APL	1.23(0.01)	1.28(0.01)	2.67(0.05)	1.14(0.04)	1.85(0.34)
Avg Cost	1.17(0.01)	1.13(0.01)	1.89(0.03)	1.16(0.04)	0.65(0.09)
Industry-Year Controls	None	3-Digit FE	6-Digit Trends	None	3-Digit Trends

 $\sigma^{\text{agg}} = (1 - \chi^{\text{agg}})\bar{\sigma}^N + \chi^{\text{agg}}[(1 - \bar{s}^M)\eta + \bar{s}^M\bar{\zeta}^N]$

Manufacturing sector-level elasticity of substitution

4 ADDITIONAL MARGINS OF ADJUSTMENT

Entry and Exit

$$\begin{split} &\sigma^{\mathrm{agg}} \\ &= (1 - \chi) \left[\sigma + \frac{\int (\alpha_{\tau} - \alpha) \frac{\mathrm{d}E_{\tau}}{\mathrm{d}\ln w/r} \theta_{\tau} \mathrm{d}T(\tau)}{\int \alpha_{\tau} (1 - \alpha_{\tau}) \theta_{\tau} \mathrm{d}T(\tau)} \right] \\ &+ \chi [(1 - \bar{s}^{M}) \varepsilon + \bar{s}^{M} \bar{\zeta}^{N}] \end{split}$$

Upper bound: Baseline Model

$$\frac{\varepsilon}{\varepsilon-1} \frac{Variable\ Costs}{Variable\ Costs+Overhead\ Costs} = \frac{\hat{\varepsilon}}{\hat{\varepsilon}-1}$$

Lower bound: Long-run elasticity=
$$\frac{\beta}{1-\rho_5-\rho_{10}}$$

$$\log \frac{K_{itc}}{L_{itc}} = \rho_5 \log \frac{K_{itc}}{L_{itc}} + \rho_{10} \log \frac{K_{itc}}{L_{itc}} + \beta \log \frac{w_{tc}}{r_t} + \eta_i + \delta_t + \epsilon_{nic}$$

4 ADDITIONAL MARGINS OF ADJUSTMENT

Entry and Exit

$$\begin{split} &\sigma^{\mathrm{agg}} \\ &= (1 - \chi) \left[\sigma + \frac{\int (\alpha_{\tau} - \alpha) \frac{\mathrm{d}E_{\tau}}{\mathrm{d}\ln w/r} \theta_{\tau} \mathrm{d}T(\tau)}{\int \alpha_{\tau} (1 - \alpha_{\tau}) \theta_{\tau} \mathrm{d}T(\tau)} \right] \\ &+ \chi [(1 - \bar{s}^{M}) \varepsilon + \bar{s}^{M} \bar{\zeta}^{N}] \end{split}$$

Upper bound: Baseline Model

$$\frac{\varepsilon}{\varepsilon - 1} \frac{Variable\ Costs}{Variable\ Costs + Overhead\ Costs} = \frac{\hat{\varepsilon}}{\hat{\varepsilon} - 1}$$

Interval [0.35,0.65]

0.35 - 0.65

Lower bound: Long-run elasticity= $\frac{\beta}{1-\rho_5-\rho_{10}}$

$$\log \frac{K_{itc}}{L_{itc}} = \rho_5 \log \frac{K_{itc}}{L_{itc}} + \rho_{10} \log \frac{K_{itc}}{L_{itc}} + \beta \log \frac{w_{tc}}{r_t} + \eta_i + \delta_t + \epsilon_{nic}$$

4 ADDITIONAL MARGINS OF ADJUSTMENT

Adjustment and Friction

Adjustment cost
Misallocation frictions

Shifts in the technological frontier

Other considerations

Intangible capital
Endogenous location choice

5 THE DECLINE OF THE LABOR SHARE

5 THE DECLINE OF THE LABOR SHARE

Technical change impacts the labor share

Micro Data

Macro Technology

THANK YOU

易诗凯洪伟励邹洺昊曾子昂孙菁桐

