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0. Introduction

Ø About Authors: Antoni Calvó-Armengol, Eleonora Patacchini and Yves Zenou, well
known for their work in social networks



0. the Novelty of the Work

ü First, from a conceptual point of view, they stress the role of the structure
of social networks in explaining individual behaviour.

ü Second, from a more operational point of view, they build a theoretical
model of peer effects that envisions group influence as an equilibrium
outcome, which aggregates the collection of active dyadic peer influences.

ü Third, they conduct a direct empirical test of their model on the network
structure of peer effects using a detailed dataset on friendship networks,
Add Health, with particular attention to the relevant econometric
problems.

Ø Before this article, there are hardly any studies that have adopted a more structural
approach to test a specific peer-effect model in education, and this is exactly what
authors do.
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Ø The network N ={1,...,n} is a finite set of agents. We keep track of social
connections by a network g, where !"# =1 if i and j are direct friends, and !"#
=0, otherwise. Given that friendship is a reciprocal relationship, we set !"# =
!#". We also set !"" = 0.

Ø Preferences Denote by %"&the effort of individual i absent of any peer influence,
and by '" the peer effort whose returns depend on others’ peer efforts. Each
agent i selects both efforts %"& ≥ 0 and '" ≥ 0, and obtains a payoff ("(*&, ,; .) ,
that depends on the underlying network g , in the following way:
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1. A Network Model of Peer Effects

Ø where                      and                        is the number of direct links of 

individual i. This utility function is additively separable in the idiosyncratic 

effort component and the peer effect contribution. The component     

introduces the exogenous heterogeneity that captures the observable

differences between individuals. Examples of such heterogeneity are agent 

i’s parents’ education, neighbourhood where he/she lives, age, sex, race, etc. 

and also the average characteristics of the individuals directly linked to i.i.e. 

average level of parental education of i’s friends, etc. (contextual effects). 
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Ø where !"# is a set of M variables accounting for observable differences in

individual, neighbourhood and school characteristics of individual i, and $# ,
%# are parameters. The peer-effect component is also heterogeneous, and this
endogenous heterogeneity reflects the different locations of individuals in the

friendship network g and the resulting effort levels.
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When i and j are direct friends, the cross derivative is 1>0 and reflects strategic
complementarity in efforts.

To be more precise, bilateral influences are captured using the following cross
derivatives, for i ≠ j:
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Ø The utility function in this model is concave in own decisions, and displays
decreasing marginal returns in own effort levels.
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1. A Network Model of Peer Effects
Ø The Katz–Bonacich network centrality

The Katz–Bonacich centrality measures the importance of a given node in a network.

0≤! is some non-negative scalar. A factor that decays with the distance discounts the
contribution of all these nodes: the value of k−link away nodes is weighted by !"#$.
Given a network g and a scalar !, we denote by b(g, !) the vector whose coordinates
correspond to the Katz–Bonacich centralities of all the network nodes.
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We associate a matrix G =[!"#] The kth power $% = $…% (")*+$ keeps track of indirect
connections in g. More precisely, the coefficient in the (i , j) cell of $% gives the
number of paths of length k in g between i and j. A path between i and j need not

follow the shortest possible route between those agents. For instance, when !"# =1, the
sequence ij → ji→ ij constitutes a path of length three in g between i and j. Denote by

1 the vector of ones. Then, G1 is the vector of node connectivities, whereas the

coordinates of $% 1 give the total number of paths of length k that emanate from the

corresponding network node.
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1. A Network Model of Peer Effects

If ! is small enough, this infinite sum converges to a finite value,which is (5 − !7)9:

We can then write the vector of Katz–Bonacich centralities as follows:
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We now characterize the Nash equilibrium of the game where agents choose their effort

levels !"#≥0 and $" ≥0 simultaneously. Each individual i

maximizes(1) and we obtain the following best reply function for each i =1,...,n:
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The optimal exogenous and endogenous peer efforts are given by (5) and (6), and 

the individual outcome is the sum of these two different efforts, namely: 

In other words, we can decompose additively individual behaviour into an 

exogenous part and an endogenous peer-effect component that depends on the 

individual under consideration. 
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Proposition 1. Suppose that  !ω(g)<1. Then, the individual equilibrium 

outcome is uniquely defined and given by: 

"#∗ (x, g) = %#(x)+ &' (#(g,!).            (8)

Denote by ω(g) the largest eigenvalue of the adjacency matrix G=[*#+] of the network
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2. DATA AND DESCRIPTIVE EVIDENCE

Ø Friendship network
ü Pupils were asked to identify their 

best friends from aschool roster (up 
to five males and five females).

ü i.e. a link exists between two friends 
if at least one of the two individuals 
has identified the other as his/her best 
friend.

Ø Educational achievements
ü Ranging from D or lower to A, the 

highest grade (re-coded 1–4).

Ø Sample 
ü 11,964 pupils distributed over 199 

networks.

2. Data and Descriptive Evidence



2. DATA AND DESCRIPTIVE EVIDENCE2. Data and Descriptive Evidence



3. EMPIRICAL STRATEGY AND IDENTIFICATION OF PEER EFFECTS

3.1 empirical strategy
Ø K network components

ü Connectedness: two agents in a network component gκ are either directly linked, 
or indirectly linked through a sequence of agents in gκ

ü Maximality: two agents in different network components gκ and gκ cannot be 
connected through any such sequence

ü Note that ∑κ" #κ = #.
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3.1 empirical strategy

Ø !κ is an (unobserved) network-specific component (constant over individuals in the same
network), which might be correlated with the regressors.

Ø εi,κ is the residual of individual i’s level of activity in the network gκ that is not

accounted for either by individual heterogeneity and contextual effects or by (unobserved)

network-specific components.

Ø Estimate "β, #γ, $φ and #µ to measure the relative importance of individual characteristics
ü "β&,…"β': contextual effects
ü #γ&,…#γ': individual’s best friends
ü individual Katz–Bonacich centrality index: $φ and #µ
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3.2 identification of peer effects 
Ø The role of network-fixed effects: the endogenous sorting of individuals into groups

ü In most cases, individuals sort into groups non-randomly.
For example, kids whose parents are less educated or worse than average in
unmeasured ways would be more likely to sort with low human capital peers.

ü Subtract the network average from the individual-level variables.

Ø The role of peer groups with individual level variation: reflection problem
ü Cannot distinguish if a group member’s action is the cause or the effect of peers’
influence.

ü Bramoull�e, Djebbari and Fortin (2009) provide general results on the identification
of peer effects through social networks via variations of the linear-in-means model

ü G1=[g!] gives the total number of one-link away contacts in the network
ü G"#=[g!"]gives the total number of two-link away contacts in the network
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Ø The role of specific controls
ü find proxies for typically unobserved individual characteristics that may be correlated
with our variable of interest.

ü Therefore, we deal with unobservable individual characteristics correlated with the
Katz–Bonacich measure that may cause education outcomes not directly caused by the
centrality measure.

Ø Estimation strategy
ü First, we estimate our empirical model defined by equation (9) for each network in our
dataset.

ü Second, for each network gκ , we calculate its largest eigenvalue ω(gκ) and check
which network does not satisfy the condition φκ < 1/ω(gκ).

ü Estimate model (9) by running a pseudo-panel data estimation (i.e. using both within
and between-network variations), thus obtaining an average estimate of φ and μ in our
dataset.
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3.2 identification of peer effects 
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4. Empirical Results And Discussion

Ø The Maximum Likelihood estimation results for the model specification that includes
the complete set of controls are reported here.

Ø The standard error of μ/φ is calculated using the deltha method. The associated t-test
value is equal to 2·11, which denotes statistical significance at the 5% level.



ü The estimated μ and φ are both positive and highly statistically significant.
ü The estimated impact of this variable on education outcomes that is predicted by the
theory, i.e. μ/φ (equation (8) in Proposition 1) is statistically significant and non-
negligible in magnitude.

A one-standard deviation increase in the Katz–Bonacich index translates into roughly
7% of a standard deviation in education outcome.
�This effect is about 17% for parental education.�
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Ø The condition φω(g) < 1 is needed for�
ü Characterizing the Nash equilibrium in terms of the Katz–Bonacich centrality
measure

ü The existence and uniqueness of the equilibrium as well as for the interiority of the
solution.

Ø Relax the condition φω(g) < 1 and bound the strategy space by simply acknowledging
the fact that students have a time constraint and allocate their time between leisure and
school work.
ü The empirical model is exactly the same with the only difference that we now run
the regression on all the 199 networks and not on 181 networks.

ü When we run such a regression, we obtained that the estimated values of μ and φ are
now respectively given by 0·0301 (with a standard error of 0·0140) and 0·5352
(with a standard error of 0·1366).
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5. Alternative Formulation

Ø Limitation and Extentions
ü Efforts separated into two parts: yi and zi

p Three alternative network models: only one effort is considered
p Equilibrium is equal to weighted Katz-Bonacich centrality index
p Not able to distinguish between impact of network location and that of
individual characteristics

ü Positive peer effect
p Peer-oriented effort can detract from school outcomes

p Difference lies on the sign of μ
• Average estimate of μ: Positive sign +
• Separate estimate of μ: 6% of the network have negative μ



Katz-Bonacich centrality Degree centrality Closeness centrality Betweenness centrality

• Counts number of any path 
stemming from a given node.

• A discounting factor as the links 
increase.

• The number of direct 
friends.

• Sum of shortest path 
between i and others

• a= number of shortest paths 
between j and l through I

• b= number of shortest paths 
between j and l
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ØResults
p Insignificant
p In terms of standard deviation: 2.1%

ØExplanation
p Unique Nash equilibrium——linear quadratic utility function——Katz-Bonacich
centrality
It maps topology to equilibrium behavior→behavioral foundation

pAlternative measures: Parameter-free network indices
Katz-Bonacich centrality: Depending on topology and peer effect strength (Φ) .
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ØAssumption�Relationships are reciprocal
p Truth: 14% relationships are not reciprocal.

ØDifferences
p Adjacency Matrix G turns to asymmetric.
pω(g�defined as spectral radius rather than largest eigenvalue

ØResults
pThe estimated effect is still statistically significant
pSlightly lower in magnitude(5.6 vs 7%)

7. Directed Networks



ØRelationship between structural network measures and estimated
p measures the strength of each existing bilateral influence in network.
p All the       are strictly positive.

uDensity
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uAsymmetry: Variance of connectivity
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uRedundancy: Fraction of transitive triads
ü It measures the probability with which two of i’s friends know each other
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ØConclusion
ü The peer effects game has a unique Nash equilibrium where each agent strategy is
proportional to Katz-Bonacich centrality measure.

ü The individual’s position in a network is a key dominant of his level of activity.

ü 1 vs 7% standard deviation.

ØExtension
ü Linear-quadratic utility functions.

ü Consider average effort of peer effect rather than aggregate efforts.

ü Other outcomes than education could be studied.
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