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Suppose that agents can exert costly effort that creates nonrival, het-
erogeneous benefits for each other. At each possible outcome, a
weighted, directed network describing marginal externalities is de-
fined. We show that Pareto efficient outcomes are those at which the
largest eigenvalue of the network is 1. An important set of efficient so-
lutions—Lindahl outcomes—are characterized by contributions being
proportional to agents’ eigenvector centralities in the network. The
outcomes we focus on are motivated by negotiations. We apply the re-
sults to identify who is essential for Pareto improvements, how to effi-
ciently subdivide negotiations, and whom to optimally add to a team.
When economic agents produce public goods, mitigate public bads, or
more generally create externalities, the incidence of the externalities is
often heterogeneous across those affected. A nation’s economic poli-
cies—for example, implementing a fiscal stimulus, legislating environ-
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network approach to public goods 731
mental regulations, or reducing trade barriers—benefit foreign econo-
mies differently. Investments by a firm in research yield different spill-
overs for various producers and consumers. Cities’ mitigation of pollution
matters most for neighbors sharing the same environmental resources.
And within a firm, an employee’s efforts (e.g., toward team production)
will benefit other employees to different degrees. How does heterogeneity
in the incidence of externalities translate into outcomes? Which agents
contribute the most and the least? Whose effort is particularly critical?
An active research program addresses these questions by modeling

agents playing a Nash equilibrium of a one-shot public goods game, in
which they unilaterally choose how much effort to put forth; see, for ex-
ample, Ballester, Calvó-Armengol, and Zenou (2006), Bramoullé, Kran-
ton, and D’Amours (2014), and Allouch (2015, 2017). These worksmodel
externalities via particular functional forms in which a network is a set of
parameters. Links describe the pairs of players who directly affect each
other’s payoffs or incentives, as when two people collaborate on a project.
The main results then characterize equilibrium effort levels via certain
network statistics. Since these statistics are major subjects of study in their
own right, the connection yields a rich set of intuitions as well as analytical
techniques for comparative statics, identifying “key players,” and various
other policy analyses.1

We argue that it is valuable to also study different classes of solutions in
a public goods economy—onesmotivated by negotiations—and, parallel-
ing the results above, to understand how network properties matter for
these solutions. The static Nash equilibrium is a benchmark relevant in
cases where decisions are unilateral, with limited scope for repetition
or commitment. Under this solution concept, agents do not internalize
the externalities of their effort. Indeed, in a public goods game, players
free-ride on the contributions of others, leading to a classic “tragedy of
the commons” problem. The resulting inefficiencies can be substantial;
in the context of problems like climate change, some argue that they
are disastrous. In cases where large gains can be realized by improving
on the unilateral benchmark, institutions arise precisely to foster multi-
lateral cooperation. Global summits,2 the World Trade Organization, re-
1 There are many empirical applications of these results. See, e.g., Calvó-Armengol,
Patacchini, and Zenou (2009) and Acemoglu, García-Jimeno, and Robinson (2015). Other
theoretical papers that examine different issues related to the provision of public goods on
networks include Bramoullé and Kranton (2007) and Galeotti and Goyal (2010).

2 For example, it was at the Rio Earth Summit that the first international treaty on cli-
mate change was hammered out. There have been several other summits and associated
climate change agreements since.
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search consortia, and corporate team-building practices all aim to miti-
gate free riding by facilitating commitment. Therefore, rather than work-
ing with the static Nash equilibrium, this paper focuses on the comple-
mentary benchmark of Pareto efficient public goods provision in the
presence of nonuniform externalities.
Our contribution is to show that taking a network perspective on the

system of externalities sheds new light on efficient outcomes and the
scope for efficient cooperation. First, we provide a new characterization
of when Pareto improvements are possible, which relates such improve-
ments to cycles of favor trading, quantified in a suitable way. Second,
we characterize certain efficient solutions—the Lindahl outcomes, which
have microfoundations in terms of negotiation games. Our results de-
scribe agents’ contributions at these outcomes in terms of their positions
in the network of externalities. The insights that the analysis generates
can help address questions such as who should be given a seat at the ne-
gotiating table or admitted to a team. In contrast to the previous work
mentioned above, our characterizations are nonparametric: a “network”
representation of marginal externality incidence arises naturally from
general utility functions. Finally, we provide new economic foundations
and intuitions for statistics that are widely used to measure the centrality
of agents in a network by relating these statistics to concepts such as Pa-
reto weights and market prices.
I. Example and Roadmap
We now present the essentials of the model in a simplified example. Sec-
tion II defines all the primitives formally in the general case. Each agent
has a one-dimensional effort/action choice, ai ≥ 0; it is costly for an agent
to provide effort, which yields positive, nonrival externalities for (some)
others. For a concrete example, suppose that there are three towns—X, Y,
and Z— located as shown in figure 1A, each generating air and water pol-
lution during production. Because of the direction of the prevailing wind,
the air pollution of a town affects only those east of it. A river flows west-
ward, so Z’s water pollution affects X but not Y, which is located away from
the river.
Town i can forgo ai ≥ 0 units of production at a net cost of a dollar per

unit, reducing its pollution and creating positive externalities for others
affected by that pollution. The important part of this assumption is that
the value of forgone production outweighs private environmental benefits;
this assumes that the net private benefits of increasing effort have already
been exhausted if they were present. Let ui(aX, a Y, aZ) denote i ’s payoff.
Suppose that the leaders of the towns attend a summit to try to agree

on improvements that will benefit all of them. We focus on like-for-like
agreements, in which agents trade favors by providing the public good of
This content downloaded from 202.120.224.054 on April 20, 2020 20:47:56 PM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



network approach to public goods 733
effort to each other, which is a relevant case for many practical negotia-
tions.3 We begin by studying the set of all outcomes that are Pareto effi-
cient and how they can be characterized in terms of the structure of ex-
ternalities.
The conceptual platform for this—and for the rest of the paper—is to

analyze a matrix whose entries record the marginal benefits per unit of
marginal cost that each agent can confer on each other, for a given ac-
tion profile. In our example, the entries of this matrix are

Bij að Þ 5 ∂ui

∂aj

að Þ
.

2
∂ui

∂ai

að Þ 5 ∂ui

∂aj

að Þ,

for i ≠ j , since we have normalized all marginal costs of effort to be 1.
The diagonal terms of the matrix are set to 0, so that it records only
the externalities between players and not their own costs. This benefits
matrix can be equivalently represented as a (weighted, directed) net-
work, where a link from i to j represents that i ’s effort affects j ’s welfare
(see fig. 1B). That network is the key object whose statistics we relate to
economic outcomes.
Our first result shows that an interior action profile a is Pareto efficient

if and only if 1 is a largest eigenvalue of B(a). The reason for this is as fol-
lows. ThematrixB(a) is a linear system describing how investments trans-
late into returns at the margin. Consider a particular sequence of invest-
ments. In figure 1B, Z can increase its action slightly and provide a
marginal benefit to X. Then X, in turn, can “pass forward” some of the
FIG. 1.—In this illustration of the framework, towns benefit from each other’s pollution
reduction. Town i benefits from j ’s pollution reduction if pollution travels from j to i, which
can happen via the wind or via the flow of the river. Let Bij 5 ∂ui=∂aj be the marginal ben-
efit to i from j ’s reduction (per unit of i’s marginal cost, which is normalized to be 1). These
numbers may vary with the action profile, (aX, aY, aZ).
3 This also parallels the above-mentioned papers regarding games on networks, which
study one-dimensional contributions. In Sec. OA2 of the online appendix, we consider
transfers: the very simple benchmark of quasi-linear preferences, as well as the general
case, where our main results have natural analogues.
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resulting increase in its utility, investing costly effort to help Z and Y. Fi-
nally, Y can also pass forward some of the increase in its utility by increas-
ing its action, creating further benefits for Z. If they can all receive back
more than they invest in such amultilateral adjustment, then the starting
point is not Pareto efficient. It is in such cases that the linear system B(a)
is “expansive”: there is scope for everyone to get more out of it than they
put in. And an expansive system is characterized by having a largest eigen-
value exceeding 1. If the largest eigenvalue of B(a) is less than 1, then ev-
eryone can bemade better off by reducing investment. As a result, the in-
terior Pareto efficient outcomes have a benefits matrix with a largest
eigenvalue exactly equal to 1. Section III.Amakes this discussion rigorous
(see proposition 1). Section III.B develops someof its interpretations and
applications. It fleshes out the idea, already suggested by the informal ar-
gument, that cycles in the benefits network are critical for Pareto im-
provements and, correspondingly, that they determine the size of the
largest eigenvalue. Finally, it discusses a simple algorithm to find the
players who are essential to a negotiation—in the sense that without their
participation, there is no Pareto improvement on the status quo. They are
the ones whose removal causes a large disruption of cycles in the benefits
network, as measured by the decrease in its largest eigenvalue.
One point on the Pareto frontier that is of particular interest is the clas-

sic Lindahl solution that completes the “missing markets” for externali-
ties. If all externalities were instead tradable goods, we could consider
the Walrasian outcome and identify the set of prices at which the market
clears. If personalized taxes and subsidies equivalent to these prices could
be charged in our public goods setting, then the same efficient outcome
would obtain. Such an allocation is called a Lindahl outcome.4 Our sec-
ondmain result characterizes the Lindahl outcomes in terms of the eigen-
vector centralities of nodes in the marginal benefits network.
Eigenvector centrality is a way to impute importance to nodes in a net-

work. Given a network G, the eigenvector centrality of node i satisfies5

ci ∝ o
j

Gij cj : (1)

This equation says that i ’s centrality is proportional to a weighted sum of
its neighbors’ centralities. Thus, the definition is a fixed-point condition
and, in vector notation, becomes lc 5 Gc for some constant l, so that
the centralities of players are a right-hand eigenvector of the network G.
The measure captures the idea that central agents are those with strong
connections to other central agents; equation (1) is simply a linear ver-
sion of this statement. The notion of eigenvector centrality recurs in a
4 A formal definition of Lindahl outcomes appears in Sec. IV.
5 Under a network connectedness condition, these equations pin down relative central-

ities uniquely.
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large variety of applications in various disciplines, and our main concep-
tual contribution is to relate it in a simple and general way to price equi-
libria. At the end of this section, we expand briefly on this point.
In our setting, we say that an action profile has the centrality property or,

equivalently, is a centrality action profile if

a 5 B að Þa: (2)

We let the word “centrality” stand for eigenvector centrality and distin-
guish it explicitly from other kinds of centrality when necessary. Theo-
rem 1 (in Sec. IV) establishes that Lindahl outcomes are exactly those
with the centrality property. One way to interpret condition (2) is that i
contributes in proportion to a weighted sum of others’ contributions
aj; the weights are i ’s marginal valuations of the efforts of other agents.
Section V shows that the eigenvector condition (2) can be expressed in

terms of walks in the benefits network, with themore central agents being
those who sit at the locus of larger direct and indirect incomingmarginal
benefit flows. This relates price-based outcomes to the structure of the
network. Building on this interpretation, theorem 1 is applied to study
a problem in which a team has to decide which new member to admit.
As another application, we study cases in which we can calculate the cen-
trality action profiles explicitly. This, in turn, is used to give several im-
portant network centrality measures an economic microfoundation and
interpretation in terms of price equilibria.6 This exercise echoes the gen-
eral conceptual message of theorem 1—that there is a close connection
between markets and network centrality—but for a wider range of net-
work statistics and in a case where centralities can be computed explicitly
in terms of exogenous parameters.
The Lindahl equilibria are of interest on more than just normative

grounds. In Section IV.B, we review theories of negotiation that provide
strategic foundations for this solution concept. First, using ideas from the
literature onWalrasian bargaining (especially Dávila, Eeckhout, andMar-
tinelli [2009] and Penta [2011]), we consider a model of multilateral ne-
gotiations that selects the Lindahl outcomes from the Pareto frontier. We
then apply ideas of Hurwicz (1979a, 1979b) on implementation theory to
show that the Lindahl equilibria are those selected by all mechanisms
that are optimal in a certain sense. Finally, we note that, in our setting,
Lindahl outcomes are robust to coalitional deviations—that is, are in
an appropriately defined core.
We close by putting our work in a broader context of research on net-

works and centrality, beyond the most closely related papers on external-
6 Relatedly, Du, Lehrer, and Pauzner (2015) show how a ranking problem for locations
on an unweighted graph can be studied via an associated perfectly competitive exchange
economy in which agents have Cobb-Douglas utility functions. We discuss the connection
in more detail in Sec. V.C.
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ities and public goods. The interdependence of economic interactions
is a defining feature of economies. When a firm does more business, it
might employ more workers, who then have more income to spend on
other goods, and so on. Eigenvector centrality (eq. [1]) loosely captures
this idea. While in broad terms prior results suggest a connection be-
tween eigenvector centrality and economic outcomes, those results’ reli-
ance on parametric assumptions leaves open the possibility that the con-
nection exists only in special cases and is heavily dependent on the
functional forms. Our contribution is to show that the connection be-
tween centrality and markets goes deeper, by formalizing it in a simple
model without parametric assumptions. In doing this, we give a new eco-
nomic angle on a concept that has been the subject of much study. In
sociology, key contributions on eigenvector-type centrality measures in-
clude Katz (1953), Bonacich (1987), and Friedkin (1991). For a survey
of applications and results on network centrality from computer science
and applied mathematics, especially for ranking problems, see Langville
and Meyer (2012).7 Other applications include identifying those sectors
in the macroeconomy that contribute the most to aggregate volatility via
a network of intersectoral linkages (Acemoglu et al. 2012), analyzing com-
munication in teams (Prat, de Martí, and Calvó-Armengol 2015), and the
measurement of intellectual influence (Palacios-Huerta and Volij 2004).
The last paper discusses axiomatic foundations of eigenvector centrality;
other work taking an axiomatic approach includes Altman and Tennen-
holtz (2005) and Dequiedt and Zenou (2017).
We discuss other closely related literature inmore detail at those points

where we expect the comparisons to bemost helpful. Omitted proofs and
some supporting analyses are deferred to appendices.
II. Framework

A. The Environment
There is a set of agents or players,N 5 f1, 2, ::: , ng. The outcome is deter-
mined by specifying an action, ai ∈ R1, for each agent i.8 Taking a
higher action may be interpreted as doing more of something that helps
the other agents—for instance, mitigating pollution. Agent i has a utility
function ui :R

n
1 →R, where ui is concave and continuously differentiable;

agent i ’s payoff when the action profile a is played is written ui(a).
7 Perhaps the most famous application of eigenvector centrality is the PageRank mea-
sure introduced as a part of Google’s early algorithms to rank search results (Brin and Page
1998). For early antecedents of using eigenvectors as a way to “value” or rank nodes, see
Wei (1952) and Kendall (1955).

8 We use R1(R11) to denote the set of nonnegative (positive) real numbers. We write
Rn

1 (R
n
11) for the set of vectors v with n entries such that each entry is in R1(R11). When

we write an inequality between vectors, e.g., v > w, that means that the inequality holds
coordinate by coordinate; i.e., vi > wi for each i ∈ N .
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B. Main Assumptions
The following four assumptions are maintained in all results of the pa-
per, unless a result explicitly states a different set of assumptions. Sec-
tion VI.A discusses the extent to which some of our more economically
restrictive explicit and implicit assumptions can be weakened.
Assumption 1 (Costly actions). Each player finds it costly to invest

effort, holding others’ actions fixed: ∂uiðaÞ=∂ai < 0 for any a ∈ Rn
1 and

i ∈N .
Our results go through if efforts are required to be only weakly costly at

the status quo. That allows us to interpret the status quo actions as an
arbitrary Nash equilibrium of a game in which agents simultaneously
choose howmuch effort to exert. We defer the technical issues associated
with this generalization to Section V.B.
Assumption 2 (Positive externalities). Increasing any player’s action

level weakly benefits all other players: ∂uiðaÞ=∂aj ≥ 0 for any a ∈ Rn
1

whenever j ≠ i.
Because the externalities are positive and nonrival, this is a public

goods environment. Together, the two assumptions we have introduced—
positive externalities and costly actions—imply that Pareto efficient out-
comes will not be achieved if they are not equal to the status quo. The as-
sumption of costly actions implies that the unique Nash equilibrium of a
game in which players choose their actions entails that everyone contrib-
utes nothing (ai 5 0 for each i), even though other outcomesmay Pareto
dominate this one as a result of positive externalities—if those external-
ities are large enough.
One interpretation of the action profile a 5 0 is as a status quo at

which negotiations begin. An alternative interpretation is that it is a Nash
equilibrium in which everyone has already exhausted their private gains
from exerting effort. We explore this second interpretation in Section V.B
and, to accommodate it, relax assumption 1 to allow agents to have exactly
zero net private benefits from increasing actions at the status quo.
Two additional technical assumptions are useful.
Assumption 3 (Connectedness of benefits). For all a ∈Rn

1, if M is a
nonempty proper subset of N, then there exist i ∈M and j ∉M (which
may depend on a) such that ∂uiðaÞ=∂aj > 0.
This posits that it is not possible to find an outcome and partition so-

ciety into two nonempty groups such that, at that outcome, one group
does not derive any marginal benefit from the effort of the other group.9

Finally, we assume that the set of points where everybody wants to scale
up all effort levels is bounded. To state this, we introduce a few defini-
9 See Sec. OA6 of the online appendix for a discussion of extending the analysis when
this assumption does not hold.
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tions. Under a utility profile u, action profile a0 ∈Rn
1 Pareto dominates an-

other profile a ∈Rn
1 if uiða0Þ ≥ uiðaÞ for all i ∈N , and the inequality is

strict for some i. We say that a0 strictly Pareto dominates a if uiða0Þ > uiðaÞ
for all i ∈ N and that a is Pareto efficient (or simply efficient) if no other ac-
tion profile Pareto dominates it.
Assumption 4 (Bounded improvements). The set

a ∈Rn
1 : there is an s > 1 so that sa strictly Pareto dominates af g

is bounded.10

This assumption is necessary to keep the problem well behaved and
ensure the existence of a Pareto frontier as well as of solutions to a bar-
gaining problem we study below.11 It is implied by, but weaker than, as-
suming an Inada condition whereby for high enough actions, marginal
benefits become very low.
C. Key Notions
We write u 5 ðu1, u2, ::: , unÞ for a profile of utility functions. The Jaco-
bian, J(a; u), is the n -by-nmatrix whose (i, j) entry is Jijða; uÞ 5 ∂uiðaÞ=∂aj .
The benefits matrix B(a; u) is then defined as follows:

Bij a; uð Þ 5
Jij a; uð Þ
2Jii a; uð Þ  if  i ≠ j ,

0  otherwise:

8><>:
As discussed in the roadmap, when i ≠ j , the quantity Bij(a; u) is i ’s

marginal rate of substitution between decreasing own effort and receiv-
ing help from j. In other words, it is how much i values the help of j, mea-
sured in the number of units of effort that i would be willing to put forth
in order to receive one unit of j’s effort.
Suppose that u satisfies the assumptions of Section II.B. Since

Jiiða; uÞ < 0 by assumption 1, the benefits matrix is well defined. Assump-
tions 1 and 2 imply that it is entrywise nonnegative. Assumption 3 is
equivalent to the statement that this matrix is irreducible at every a.12

In discussing both the Jacobian and the benefits matrix, when there is
no ambiguity about what u is, we suppress it.
For any nonnegative matrixM, we define r(M) as the maximum of the

magnitudes of the eigenvalues of M, also called the spectral radius. That is,
10 This condition is weaker than assuming that the set of Pareto efficient outcomes is
bounded.

11 For details, see Sec. IV.B and particularly the proof of proposition 2.
12 A matrix M is irreducible if it is not possible to find a nonempty proper subset S of in-

dices so that Mij 5 0 for every i ∈ S and j ∉ S .
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r Mð Þ 5 max lj j : l is an eigenvalue of  Mf g,
where FlF denotes the absolute value of the complex number l. By the
Perron-Frobenius theorem (see app. A for a statement), any such matrix
has a real, positive eigenvalue equal to r(M). Thus, we may equivalently
think of r(M) as the largest eigenvalue of M on the real line.
This quantity can be interpreted as a single measure of how expansive

a matrix is as a linear operator—how much it can scale up vectors that it
acts on. When applied to the benefits matrix B, it will identify the scope
for Pareto improvements.
III. Efficiency and the Spectral Radius
The thesis of this paper is that we can gain insight about efficient solu-
tions to public goods problems by constructing, for any action profile
a under consideration, a network in which the agents are nodes and
the weighted links among them measure the marginal benefits available
by increasing actions. The adjacency matrix of this network is B(a).
This section offers support for the thesis by showing that an important

statistic of this network—the size of the largest eigenvalue—can be used
to diagnose whether an outcome is Pareto efficient (Sec. III.A). After pre-
senting this general result, we discuss interpretations (especially in terms
of the structure of the network) and applications.
A. A Characterization of Pareto Efficiency
Our main result on efficiency is the following.
Proposition 1. (a)Under assumptions 1–3, an interior actionprofile

a ∈Rn
11 is Pareto efficient if and only if the spectral radius of B(a) is 1.

(b) Under assumptions 1 and 2, the outcome 0 is Pareto efficient if and
only if r ðBð0ÞÞ ≤ 1.
One argument for this result makes precise the intuition presented in

the roadmap: when the spectral radius is greater than 1, we can obtain a
Pareto improvement if one agent increases his action, generating bene-
fits for others, and then other agents “pass forward” some of the benefits
they receive. For simplicity, we work with claim a in the proposition, de-
ferring claim b to the proof in appendix C. Fix any a ∈Rn

11 and drop it in
arguments; write r for the spectral radius of B(a). Then, by the Perron-
Frobenius theoremand themaintainedassumptions, there is ad ∈Rn

11 such
that Bd 5 rd. Multiplying each row of this matrix equation by2Jii(a), we
find that for each i,

o
j≠i

∂ui

∂aj

dj 1 r
∂ui

∂ai

di 5 0:
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If r > 1, then, using the assumption of costly actions (∂ui=∂ai < 0), we
deduce that

o
j≠i

∂ui

∂aj

dj 1
∂ui

∂ai

di > 0, (3)

showing that a slight change where each i increases his action by the
amount di yields a Pareto improvement. The vector d describes the rela-
tive magnitudes of contributions to make the passing forward of benefits
work out to achieve a Pareto improvement. Note that it is key to the ar-
gument that d is positive.13 The conditions of the Perron-Frobenius the-
orem guarantee the positivity of d, though weaker conditions are known—
see Section VI.A. If r < 1, we reason similarly to conclude the inequality
(3) when each i slightly decreases his action by the amount di.
The key step not shown by the argument so far is that if rðBðaÞÞ 5 1,

then a is Pareto efficient. To show this, note that by the Perron-Frobenius
theorem, the condition rðBðaÞÞ 5 1 implies the existence of a left-hand
eigenvector v of B(a) with all positive entries, satisfying vBðaÞ 5 v. This
can readily be rearranged into the equation vJðaÞ 5 0, which is the sys-
tem of first-order conditions for the problem of maximizing oiviuiðaÞ by
choosing a. Since the first-order conditions hold for the vector of weights
v and the maximization problem is concave, it follows that a is Pareto ef-
ficient.
A complete proof of proposition 1 is in appendix C.
Proposition 1 shows that we can diagnose whether an outcome is Pareto

efficient by using just the spectral radius of the benefits matrix, dispens-
ing with the construct of Pareto weights. Moreover, the spectral radius
provides more than just qualitative information; it can also be interpreted
as a quantitative measure of the size of the inefficiency. In particular, the
spectral radius measures the best return on investment in public goods
per unit of cost that can simultaneously be achieved for all agents. Details
on this can be found in appendix B. We axiomatize the spectral radius of
the benefits matrix as a measure of marginal (in)efficiency in a sister pa-
per, Elliott and Golub (2015).
The condition vBða*Þ 5 v says that, for each i, we have vi 5 ojvjBji .

That is, i ’s Pareto weight is equal to the sum of the various other Pareto
weights, with vj weighted by Bji(a*), which measures how much j cares
about i ’s contribution. This echoes the definition of eigenvector central-
ity from Section I; indeed, v is the eigenvector centrality of the network
B(a*)⊤. Thus, a planner maximizes the weighted sum of utilities, with
weights v, by having the agents take actions so that in the transpose of
the induced benefits network each agent’s centrality is equal to his Pareto
13 If its entries had different signs, then Bd2rd > 0 would not imply anything useful
about Pareto improvements, because the second term would not move uniformly in one
direction when r is replaced by 1.
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weight. Correspondingly, in the transpose of the benefits network at
a Pareto efficient outcome, each agent’s centrality reveals his implied
weighting by a planner.
The condition that the spectral radius of B(a) is 1 is independent of

how different players’ cardinal utilities are measured—as, of course, it
must be, since Pareto efficiency is an ordinal notion. To see how the ben-
efits matrix changes under reparameterizations of cardinal utility, suppose
that we define, for each i ∈N , new utility functions ûiðaÞ 5 fi ðuiðaÞÞ for
some differentiable, strictly increasing functions fi. If we let B̂ be the ben-
efits matrix obtained from these new utility functions, then BðaÞ 5 B̂ðaÞ;
this follows by applying the chain rule to the numerator and denominator
in the definition of the benefits matrix.
Relation to utilitarian surplus.—It is worth comparing our condition for

Pareto efficiency to the condition for efficiency from the perspective of a
utilitarian planner who places equal weights on all players. Assume for
this discussion that ∂ui=∂ai 5 21, so that all agents’ utilities are normal-
ized to make the costs of contribution equal in utiles. Then, there is a
utilitarian improvement if and only if some column of B(a) has a sum
not equal to 1.14 This condition is very different from the spectral radius
being different from 1, though utilitarian efficiency (all column sums
equaling 1) does, of course, imply Pareto efficiency (the spectral radius
equaling 1).
Some further general statements can be made, however. If all the col-

umn sums of B(a) are less than 1 (the utilitarian marginal surplus of ev-
ery agent’s contribution is less than 1), then the spectral radius of B(a) is
less than 1 (Takayama 1985, corollary to theorem 4.C.11) and a Pareto
improvement can be achieved. Similarly, if all column sums of B(a) ex-
ceed 1, then the spectral radius of B(a) exceeds 1 and there is also guar-
anteed to be a Pareto improvement. However, when some columns of
B(a) have sums exceeding 1 and others do not, there is not a simple re-
lation between these sums and Pareto improvements or even the possibil-
ity of Pareto improvements. We discuss these issues further in Elliott and
Golub (2015).
B. Essential Players
Are there any players who are essential to negotiations in our setting,
and if so, how can we identify them?
The efficiency results of Section III.A suggest a simple way of charac-

terizing how essential any given player is to the negotiations. Suppose for
14 If the sum of column j exceeds 1, the utilitarian marginal social surplus of j increasing
his contribution, oi≠j ∂ui=∂aj , exceeds the social cost, which is 1. The argument for the other
inequality is similar.
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a moment that a given player exogenously may or may not be able to par-
ticipate in an institution to negotiate an outcome that Pareto dominates
the status quo. If he is not able, then his action is set to the status quo
level of ai 5 0. How much does such an exclusion hurt the prospects
for cooperation by the other agents?
Without player i, the benefits matrix at the status quo of 0 is equal to

the original B(0) without row and column i; equivalently, each entry in
that row and column may be set to zero. Call a matrix constructed that
way B[2i](0). The spectral radius of B[2i](0) is no greater than that of B(0).
In terms of consequences for efficiency, the most dramatic case is one in
which the spectral radius ofB(0) exceeds 1 but the spectral radius ofB[2i](0)
is less than 1. Then, by proposition 1b, a Pareto improvement on 0 exists
when i is present but not when i is absent.
This argument shows that all players weakly improve the scope for Pa-

reto improvements and that a player i ’s participation is essential to achiev-
ing any Pareto improvement on the status quo precisely when his removal
changes the spectral radius of the benefits matrix at the status quo from
being greater than 1 to being less than 1. To directly apply this result in-
volves calculating the spectral radius of many counterfactual benefits ma-
trices. Is there a way in which we instead identify essential players by simply
eyeballing the benefits network?
As noted in the roadmap, a cycle of players such that each can help the

next creates scope for cooperation. When there are no cycles of cooper-
ation at the status quo actions, there is no way to simultaneously com-
pensate all members of any set of agents for taking positive effort, and
no Pareto improvements are possible. Such a situation corresponds to
the benefits matrix having a spectral radius of 0 at the status quo actions,
and so the lack of cycles is directly tied to the spectral radius. Thus, a suf-
ficient condition for a player to be essential is for that player to be part of
all cycles.
To illustrate this, consider the following example illustrated in figure 2,

in which N 5 f1, 2, 3, 4g.
The import of the example is that player 4, even though he confers the

smallest marginal benefits, is the only essential player. Without him,
there are no cycles at all, and the spectral radius of the corresponding
benefits matrix B[24](0) is 0. On the other hand, when he is present
but any one other player (i ≠ 4) is absent, then there is a cycle whose
edges multiply to more than 1, and the spectral radius of B[2i](0) ex-
ceeds 1. Thus, the participation of a seemingly “small” player in negoti-
ations can make an essential difference to the ability to improve on the
status quo when that player completes cycles in the benefits network.
The example suggests that we might be able to reinterpret proposi-

tion 1 in terms of the cycles that are present in the benefits matrix. How-
ever, the example is particularly stark—player 4 is involved in all cycles.
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More generally, how do different cycles feed into the spectral radius, and
can we use that connection to identify essential players? A standard fact
permits a general and useful interpretation (for background and a
proof, see, e.g., Milnor [2001]).
Fact 1. (a)ForanynonnegativematrixM, rðMÞ5 lim sup‘→∞ traceðM‘Þ.

(b) In particular, if B and B̂ are two nonnegative matrices such that B ≥ B̂,
then r ðBÞ ≥ r ðB̂Þ.
For a directed, unweighted adjacency matrix M, the quantity traceðM‘Þ

counts the number of cycles of length ‘ in the corresponding network.
More generally, for an arbitrary matrix M, it measures the strength of all
cycles of length ‘ by taking the product of the edge weights for each such
cycle and then summing these values over all such cycles.15 Thus, by fact 1,
the total value of long cycles provides an asymptotically exact estimate of
the spectral radius.
An immediate implication of fact 1 is that essential players are those

who are present in sufficiently many of the high-value cycles in the net-
work, regardless of the specific marginal benefits they receive and pro-
vide. Ballester et al. (2006) pose a question similar to ours. They consider
a setting where agents can privately benefit from taking positive effort and
players simultaneously choose how much effort to exert. Studying the
Nash equilibrium of this game, they define the key players as those whose
removal results in the largest decrease in aggregate effort. In appendix E,
we provide an example in which their key player and our essential player
differ.16 Loosely, the essential player is the player present in many strong
cycles of marginal benefits (measured by first derivatives of payoffs), while
FIG. 2.—Example of a benefits matrix B(0) and its graphical depiction, in which player 4
is essential despite providing smaller benefits than the others.
15 More formally, a (directed) cycle of length ‘ in the matrix M is a sequence (cð1Þ,
cð2Þ, ::: , cð‘Þ, cð‘ 1 1Þ) of elements of N (players), so that the cycle starts and ends at the
same node (cð‘ 1 1Þ 5 cð1Þ), and McðtÞcðt11Þ > 0 for each t ∈ f1, ::: , ‘g. Let Cð‘;MÞ be the
set of all cycles of length ‘ in matrix M. For any nonnegative matrix M, traceðM‘Þ 5
oc∈Cð‘;MÞ

Q‘
t51 McðtÞcðt11Þ.

16 Sec. V.B discusses the details of endogenizing the Nash status quo, which permits
studying its comparative statics simultaneously with those of our efficient solution in the
same model.
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the key player is the player whose effort is most directly and indirectly
complementary to others’ (measured by cross partials of payoffs).
The connection between the spectral radius and cycles also suggests

when there will be greater scope for cooperation. A single weak link in a cy-
cle will dramatically reduce the value of that cycle. Thus, networks with an
imbalanced structure, in which it is rare for those agents who could con-
fer large marginal benefits on others to be the beneficiaries of others’ ef-
forts, will have a lower spectral radius, and there will be less scope for coop-
eration.
IV. Lindahl Outcomes
In this section, we focus attention on a particular class of Pareto efficient
solutions. The insight behind the Lindahl solution is that a public good
would be provided efficiently if each agent could be made to face a per-
sonalized price equal to his marginal benefit from the good. This would
allow contributions to be collected up to the point where the marginal
social benefit of providing the public good equals its marginal social cost.
This point was initially made in simple environments, but Arrow (1969)
shows that, quite generally, externalities—whatever their incidence—can
be reinterpreted as missing markets. Following Lindahl and Arrow, we
augment our setting by adding the missing markets and look for a Wal-
rasian equilibrium of the augmented economy. We refer to these out-
comes as Lindahl outcomes. The prices in themarkets that are introduced
are personalized taxes and subsidies: each agent pays a personalized tax
for every unit of each other agent’s effort he enjoys, and he receives a per-
sonalized subsidy (financed by others’ taxes) per unit of effort he exerts.17

These prices are not subject to the normal equilibrating forces that oper-
ate in competitive markets (Samuelson 1954). In Section IV.B, we review
game-theoretic microfoundations for the Lindahl concept in our setting,
explaining what sorts of negotiations can lead to Lindahl outcomes.
To construct the augmented economy, let P be an n-by-nmatrix of prices,

with Pij (for i ≠ j) being the price i pays to j per unit of j ’s effort. LetQ ij be
howmuch i purchases of j ’s effort at this price. The total expenditure of i
on other agents’ efforts is oj PijQ ij , and the total income that i receives
from other agents is oj PjiQ ji . Market clearing requires that all agents
i ≠ j demand exactly the same effort from agent j, and so Q ij 5 aj for
all i and all j ≠ i. Incorporating these market-clearing conditions, agent
i faces the budget constraint
17 There need not be any transferable private commodity in which these prices are de-
nominated. We can think of each player having access to artificial tokens, facing prices for
the public goods denominated in these tokens, and being able to choose any outcome sub-
ject to not using more tokens than he receives from others.
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o
j : j≠i

Pijaj ≤ aio
j : j≠i

Pji: (BBi(P))

The Lindahl solution requires that, subject tomarket-clearing and bud-
get constraints, the outcome is each agent’s most preferred action pro-
file among those he can afford. We therefore have the following defini-
tion.
Definition 1. An action profile a* is a Lindahl outcome for a prefer-

ence profile u if there are prices P so that the following conditions hold
for every i: (a) inequality (BBi(P)) is satisfied when a 5 a*; and (b) for any
a such that the inequality (BBi(P)) is satisfied, we have uiða*Þ ≥ uiðaÞ.
Hatfield et al. (2013) consider the problem of agents located on a net-

work trading bilateral contracts. The augmented economy we have con-
structed can be mapped into their very general domain. They show that
with quasi-linear utilities and under a condition of “full substitutability,”
stable outcomes exist and are essentially equivalent to the competitive
equilibrium outcomes. It might be hoped that we can make use of their
results. Unfortunately, we cannot. Their full-substitutability condition is
violated by our augmented economy. Intuitively, the opportunities for
agent i to be compensated for his effort by agents j and k are complemen-
tary—agent i needs to exert effort only once to be compensated by both j
and k.
The main result in this section, theorem 1, relates agents’ contribu-

tions in Lindahl outcomes to how “central” they are in the network of ex-
ternalities.
Definition 2. An action profile a ∈ Rn

1 has the centrality property (or
is a centrality action profile) if a ≠ 0 and BðaÞa 5 a.
According to this condition, a is a right-hand eigenvector of B(a) with

eigenvalue 1. Because actions are nonnegative, the Perron-Frobenius the-
orem implies that such an a is the Perron, or principal, eigenvector—the
one associated with the largest eigenvalue of the matrix.18 Section I pro-
vided some background on this notion of centrality.
Theorem 1. The following are equivalent for a nonzero a ∈ Rn

1:
(a) BðaÞa 5 a, that is, a has the centrality property; and (b) a is a Lindahl
outcome.
We can also establish that any nonzero Lindahl outcome is interior

(lemma 2; app. C). An outline of the proof of theorem 1 is below, and
the complete proof appears in appendix C. However, before we present
the argument, it is worth remarking on some simple consequences of

(BBi(P))
18 We discussed in Sec. III.A that the set of Pareto efficient action profiles
rescaling the utility functions, because such rescalings do not affect the be
The same argument implies that the centrality action profiles are also inva
rescalings.
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theorem 1. First, at any interior Lindahl outcome a, the matrix B(a) has
a nonnegative right eigenvector a with eigenvalue 1 and therefore, by
the Perron-Frobenius theorem, a spectral radius of 1. Proposition 1 then
implies the Pareto efficiency of a, providing an alternative proof of the
first welfare theorem.19

Second, the condition BðaÞa 5 a is a system of n equations in n un-
knowns (the coordinates of a). By a standard argument (see, e.g., Shan-
non 2008), this entails that for generic utility functions satisfying our as-
sumptions, the set of solutions will be of dimension 0 in Rn

1. Therefore,
the set of Lindahl outcomes is typically “small,” as is usually the case with
sets of market equilibria.
Finally, the equivalence between Lindahl outcomes and centrality ac-

tion profiles allows us to establish the existence of a Lindahl equilibrium
in our setting, where standard proofs do not go through because of their
boundedness requirements.
Proposition 2. Either a 5 0 is Pareto efficient or there is a central-

ity action profile in which all actions are strictly positive.
The proof of proposition 2 is in appendix C. We also show that the

profile 0 is a Lindahl outcome if and only if it is Pareto efficient (prop-
osition 7; app. D).
A. An Outline of the Proof of Theorem 1
It is convenient to introduce scaling-indifferent action profiles. From the
definition of the benefits matrix, scaling indifference is easily verified
to be equivalent to the centrality property, and we use the two notions
interchangeably. Recall that J(a) is the Jacobian, with entry (i, j) equal
to JijðaÞ 5 ∂uiðaÞ=∂aj .
Definition 3. An action profile a ∈ Rn

1 satisfies scaling indifference
(or is scaling indifferent)20 if a ≠ 0 and JðaÞa 5 0.
We show below that a profile is a Lindahl outcome if and only if it has

the centrality property. The more difficult part is the “if” part. The key
fact is that the system of equations Bða*Þa* 5 a* allows us to extract Pa-
reto weights that support the outcome a* as efficient, and using those Pa-
reto weights and the Jacobian, we can construct prices that support a* as
a Lindahl outcome.
Now we add more detail. Suppose that we have a nonzero a* so that

Bða*Þa* 5 a*. As we noted in the previous subsection, the profile a* is
19 A standard proof can be found in, e.g., Foley (1970).
20 To see the reason for the name, note that, to a first-order approximation,

uða 1 εvÞ ≈ uðaÞ 1 εJðaÞv. Suppose now that actions a are scaled by 1 1 ε, for some small
real number ε; this corresponds to setting v 5 a. If JðaÞa 5 0, then all players are indiffer-
ent, in the first-order sense, to this small proportional perturbation in everyone’s actions.
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then interior and Pareto efficient.21 It follows by a standard fact that there
are Pareto weights v ∈ R1∖f0g such that a* maximizes oiviuiðaÞ over all
a ∈ Rn

1.
Let us normalize utility functions so that Jiiða*Þ 5 21. We guess

Lindahl prices
Pij 5 vi Jij a*ð Þ

for i ≠ j . For notational convenience, we also define a quantity Pii 5
vi JiiðaÞ.
To show that, at these prices, actions a* satisfy the definition of a Lin-

dahl outcome, two conditions must hold. The first is the budget balance
condition, replicated for convenience:

o
j : j≠i

Pija*j 2 a*i o
j : j≠i

Pji ≤ 0: (BBi(P)0)

Second, agents must be choosing optimal action levels subject to their
budget constraints, given the prices.
First, we show that at the prices we have guessed, equation (BBi(P)

0)
holds with equality, and so each agent is exhausting his budget:

o
j : j≠i

Pija*j 2 a*i o
j : j≠i

Pji 5 0: (4)

To this end, first note that a* maximizes oi viuiðaÞ, implying the first-
order conditions

o
i∈N

vi Jij a*ð Þ 5 0 ⇔ o
j : j≠i

Pij 5 2Pii ,

where the rewriting on the right is from our definition of the Pij. Now,
the equation (4) that we would like to establish becomes oj : j≠i Pija*j 1
a*i Pii 5 0, or Pa* 5 0. Because row i of P is a scaling of row i of J(a*), this
is equivalent to Jða*Þa* 5 0. This holds because a* is a centrality action
profile and thus, as we noted at the beginning of this proof outline, scal-
ing indifferent.
It remains only to see that each agent is optimizing at prices P. The

essential reason for this is that price ratios are equal to marginal rates
of substitution by construction. Indeed, when all the denominators in-
volved are nonzero, we may write

Pij

Pik

5
vi Jij a*ð Þ
vi Jik a*ð Þ 5

Jij a*ð Þ
Jik a*ð Þ : (5)

Since Pii is minus the income that agent i receives per unit of action, this
checks that each agent is making an optimal effort-supply decision, in
addition to trading off all other goods optimally.

BBi Pð Þ0ð Þ
21 This is the point where the Perron-Frobenius theorem plays a key role—
cussion that follows proposition 1a.
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Consider now the converse implication—that if a* is a nonzero Lin-
dahl outcome, then Jða*Þa* 5 0. A nonzero Lindahl outcome a* can
be shown to be interior. (This is lemma 2 in app. C.) Given this and that
agents are optimizing given prices, we have

Pij

Pik

5
Jij a*ð Þ
Jik a*ð Þ ,

which echoes equation (5) above. In other words, each row of P is a scal-
ing of the same row of J(a*). Therefore, the condition that each agent is
exhausting his budget,22 which can be succinctly written as Pa* 5 0, im-
plies that Jða*Þa* 5 0.
For intuition, we offer a brief comment on the form of the prices. The

prices we guessed were Pij 5 vi Jijða*Þ. This entails that, all else equal, an
agent pays a higher price if his Pareto weight is greater and if he values
the good in question more (relative to his own marginal cost of provid-
ing effort—remembering that we have normalized here so that Jiiða*Þ 5
21). What is the reason for prices to have this form?
For agent i to be optimizing, he must be maximizing ui(a) subject to

the budget constraint (BBi(P)
0) and, by the first-order conditions, miPij 5

Jijða*Þ, where mi is the Lagrange multiplier on the constraint (BBi(P)
0)—

that is, the marginal utility of relaxing the constraint (BBi(P)
0), or the mar-

ginal utility of income to i. Next, consider the planner who puts weight vi
on player i. At a solution to this planner’s problem, it must be that mivi is the
same across agents and thus a constant—otherwise the planner would
want to increase the actions of some agents and reduce the actions of
others. Combining these two observations, we deduce that Pij is directly
proportional to viJij(a*), and, as only relative prices matter, we can set
Pij 5 vi Jijða*Þ, which is the guess we made above.23
B. A Review of Foundations for the Lindahl Solution
We introduced the Lindahl solution as a conceptual device for emulating
missingmarkets for externalities but deferred discussion of how it can be
implemented in actual negotiations over public goods. In this section, we
review several foundations for the Lindahl solution—combinations of
normative and strategic properties implying it. In view of theorem 1,
these results are equivalently foundations for the class of centrality action
profiles. Our discussions here adapt existing results, and so we describe
the essence of each foundation briefly, referring to the prior literature.
In each case, we have to adjust previous arguments to work in our setting
22 This follows because each agent is optimizing given prices, and by assumption 3 there
is always some contribution each agent wishes to purchase.

23 We thank Phil Reny for this insight.
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with unbounded action spaces. Sections OA3–OA5 of the online appen-
dix are devoted to precise statements.
1. A Group Bargaining Game
We consider a bargaining game related to those studied by Dávila et al.
(2009) and Penta (2011). These papers are part of a broader literature
that seeks multilateral bargaining foundations for Walrasian outcomes.24

In the game, agents take turns speaking in sequence, and each agent
can make a proposal about the ratios in which individuals should con-
tribute. A typical proposal says, “For every unit done by me, I demand
that agent 1 contribute 3 units, agent 2 contribute 0.5 units,” and so on.
Following this, each agent simultaneously replies whether he vetoes the
proposal and, if not, how many units he is willing to contribute at most.
Assuming no vetoes, the maximum contributions are implemented con-
sistent with the announced ratios and everyone’s caps. If someone ve-
toes, a period of delay occurs and the next proposer gets to speak. Until
an agreement is reached, players receive the payoff of the status quo out-
come, and they discount at rate d > 0 per period.
The result is that the only Pareto efficient equilibrium outcomes in-

volve immediate agreement on a centrality action profile. Thus, in a nat-
ural multilateral generalization of sequential bargaining, equilibrium
play, along with the requirement of efficiency, selects the Lindahl out-
come. The details are in Section OA3 of the online appendix.
2. Implementation Theory: The Lindahl Outcome
as a Robust Selection
An alternative approach, based on implementation theory, places a more
stringent normative requirement on the game—requiring all equilibria
to yield efficient improvements on the status quo. It turns out that Lin-
dahl outcomes play a distinguished role from this perspective as well.
Again we sketch the result, relegating the formal treatment to Sec-
tion OA4 of the online appendix.25

A designer specifies a mechanism—message spaces for all the agents
and an (enforceable) outcome function that maps messages into action
profiles a ∈ Rn. The designer assumes that the profile of players’ prefer-
ences, u 5 ðu1, u2, ::: , unÞ, comes from some particular set U, but she
does not know exactly which preferences they will have in this set. She
24 See also Yildiz (2003) and Dávila and Eeckhout (2008).
25 Our result is analogous to theorem3 ofHurwicz (1979a). Because the environment stud-

ied in that paper—with assumptions such as nonzero endowments of all private goods—is
not readily adapted to our problem, we prove the result separately, using Hurwicz’s insights
combined with Maskin’s theorem.
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also assumes that players will end up playing a complete-information
Nash equilibrium of her game, but she has no control over which equilib-
rium. We look for games the designer can create in which, for all prefer-
ence profiles, all Nash equilibria satisfy Pareto efficiency and individual
rationality. Pareto efficiency requires that any action profile resulting
from equilibrium play of the game is Pareto efficient. Individual rational-
ity ensures that every player is no worse off than at the status quo. We also
require that equilibrium outcomes depend continuously on agents’ pref-
erences: arbitrarily small changes in preferences cannot force large
changes in the equilibrium set.
It turns out that there are certain outcomes that occur as equilibrium

outcomes for every mechanism satisfying the desiderata we have out-
lined above. This set of outcomes is called the set of robustly attainable out-
comes. And the argument in favor of the Lindahl selection is the fact that,
under suitable assumptions, this set is exactly equal to the set of Lindahl
outcomes.
More precisely, the result is as follows. Assume that U consists of all

profiles satisfying the assumptions of Section II.B and that the number
of players n is at least 3. Then the robustly attainable outcomes are the
Lindahl outcomes.
To see why this result is useful, suppose that multiplicity of equilibria is

considered a drawback of a mechanism—perhaps because this renders it
less effective at coordinating the players on one efficient outcome. In
that case, mechanisms implementing just the centrality action profiles
do the best job of avoiding multiplicity. Such mechanisms exist exactly
when there is a unique centrality action profile. In those cases, that is
the outcome implemented.
3. Coalitional Deviations: A Core Property
As we are modeling negotiations, a natural question is whether some
subset of the agents could do better by breaking up the negotiations
and coming to some other agreement among themselves. Although this
is outside the scope of actions available to the agents as modeled, the
Lindahl outcomes are robust to coalitional deviations, if we assume that
after a deviation, negotiations collapse and the nondeviating players
choose their individually optimal responses, which are the status quo ac-
tions.26 In our setting, this also minimizes the payoffs of any group of de-
viating players, taking the deviators’ actions as given. Thus, the response
by the complementary coalition is both individually optimal for the pun-
ishers and maximally harsh to the punished. We consider an outcome
26 For any actions agents other than i can take, holding constant these actions a2i, agent
i’s payoff is maximized by i selecting ai 5 0.
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robust to coalitional deviations if no coalition would like to deviate, an-
ticipating such a punishment.
Then we have the following result: if a ∈ Rn

1 has the centrality prop-
erty, then a is robust to coalitional deviations in the sense just described.
This result is presented formally in Section OA5 of the online appendix
The remarkable yet simple argument for this, due to Shapley and Shu-

bik (1969), is that the standard core of the artificial economy we presented
above (with tradeable externalities) can be identified with the set of ac-
tion profiles that are robust to coalitional deviations in our setting. In de-
fining the core of the economy with tradeable externalities, we think of a
deviating coalition ceasing trade with players outside of it. When exter-
nalities are not tradeable, we define outcomes robust to coalitional devi-
ations by positing that a deviating coalition is punished by players out-
side the coalition reverting to the zero action level, that is, the action
level at which the deviating coalition receives no benefits from the rest
of society. Both coalitional deviations yield the same payoffs, so the same
action profiles are robust to coalitional deviations in both settings.
4. A General Comment on Commitment
and Information
The foundations for Lindahl outcomes that we have presented in this
section have two key features: (1) commitment over actions and (2) com-
plete information among the negotiating agents.
The assumption of commitment is standard in mechanism design

and in our case is crucial for overcoming the free-riding problem. Some
amount of commitment is necessary to contemplate efficient solutions—
whether that commitment is credible because of the incentives created
by repeated interaction or modeled via exogenous rules of the game,
as in Sections IV.B.1 and IV.B.2. How much enforcement is possible in
particular public goods problems is a critical question. Our contribution
is to examine, in the benchmark case where there is commitment, how
the network of externalities affects an important class of efficient solu-
tions.
In terms of information, we assume that while the designer of the game

may be ignorant of everything but the basic structure of the environment,
the players interact with complete information about each other’s prefer-
ences. Indeed, when transferable utility is not assumed—that is, when
Vickrey-Clarke-Groves pivot mechanisms are not available—mechanism
design with interim uncertainty in environments such as ours is not well
understood.27 Versions of ourmodel with asymmetric information are cer-
27 See, e.g., Garratt and Pycia (2016) for recent work.
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tainly worth studying. We would expect the connections we identify be-
tween favor-trading games and networks to be relevant for that analysis.
V. Applications
In this section, we present four applications of our general results. First,
we show how the above analysis can be used to predict who will be admit-
ted to a team. Second, we extend the framework to endogenize the status
quo, making it a Nash equilibrium of a unilateral-contribution game; this
enriches the comparative statics of the problem, since now both the status
quo and Lindahl outcomes move around with the environment. Third,
we use special cases of our results to providemarket interpretations of sev-
eral measures of network centrality that have been utilized in a variety of
settings, both within economics and especially in other fields. Finally, we
study when a negotiating group or a team may be subdivided without
much loss in terms of the outcome they reach.
For some of these discussions, it is helpful to think about eigenvector

centralities in terms of walks on the network, so we begin with a discus-
sion of that. In Section III.B, we saw that the spectral radius of the ben-
efits matrix could be interpreted in terms of the values of long cycles. A
related interpretation applies to centrality action profiles. A walk of length
‘ in the matrixM is a sequence (wð1Þ, wð2Þ, ::: , wð‘ 1 1Þ) of elements of N
(agent indices) such that MwðtÞwðt11Þ > 0 for each t ∈ f1, 2, ::: , ‘g.28 Let
W↓

i ð‘;MÞ be the set of all walks of length ‘ in M ending at i (in our no-
tation, such that wð‘ 1 1Þ 5 i). For a nonnegative matrix M, define the
value of a walk w of length ‘ as the product of all matrix entries (i.e., link
weights) along the walk:

v w;Mð Þ 5
Y‘
t51

Mw tð Þw t11ð Þ:

Note that such walks can repeat nodes—for example, they may cover the
same cycle many times. Then we have the following.
Proposition 3. LetM 5 BðaÞ⊤, and assume that this matrix is aperi-

odic.29 Then a has the centrality property if and only if, for every i and j,

ai

aj

5 lim
‘→∞

ow∈W↓
i ‘;Mð Þv w;Mð Þ

ow∈W↓
j ‘;Mð Þv w;Mð Þ :

A walk in B(a)⊤ ending at i can be thought of as a chain of benefit
flows: for example, k helps j, who helps i. The value of such a walk is the
28 Note that a cycle is a special kind of walk.
29 A simple cycle is one that has no repeated nodes except the initial/final one. A matrix is

said to be aperiodic if the greatest common divisor of the lengths of all simple cycles in that
matrix is 1.
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product of the marginal benefits along its links. According to proposi-
tion 3, at a centrality action profile (and hence a Lindahl outcome), a
player contributes in proportion to the total value of such benefit chains
that end with him.30

An implication of this analysis is that if the benefits i receives from j
decrease at all action profiles—that is, Bij(a) decreases for all a—then
i’s centrality action level relative to that of all other agents will decrease.
Thus, it is the benefits i receives, rather than the benefits i confers on
others, that really matter for i ’s Lindahl action. If, for example, there is
an agent who can very efficiently provide benefits to the other agents and
centrality action profiles are played, then there can be high returns from
increasing the marginal benefits that this agent receives from others (and
particularly those others with high eigenvector centrality). This has im-
portant implications, which we now discuss.
A. Application: Admitting a New Team Member
Suppose that agents N 5 f1, 2, 3g currently constitute a team. These ini-
tial teammembers must decide whom, if anyone, to admit as a newmem-
ber of their team. They have four options: admit nobody or admit a new
team member j ∈ M 5 f4, 5, 6g. Afterward, the formed team collec-
tively decides how much effort each of them should exert. We assume
that these negotiations result in the Lindahl actions being played (see
Sec. IV.B.1 for a motivation).
Who can provide benefits to whom in the initial team is described by

the unweighted, directed graph G (with entries in {0, 1}), illustrated in
figure 3A. Once the decision about team composition has been made,
Gij is set to 0 if either i or j is not on the team. We assume that the original
teammembers N can provide relatively strong benefits to each other and
to the new team membersM but that the new team membersM are able
to provide only weaker benefits. Specifically, the utility function of i is

ui að Þ 5 o
j∈N

Gij log 1 1 aj

� �
1 o

j∈M

Gij

4
log 1 1 aj

� �
2 ai :

Agents not on the team will choose to exert no effort and will receive a
payoff of 0.31 Figure 3B illustrates all possible benefit flows. Whom, if
anyone, should the initial team members admit? Will the initial team
members be able to agree on whom to admit?
30 The formula of the proposition would also hold if had we defined M 5 BðaÞ and re-
placed W↓

i ð‘;MÞ by W↑
i ð‘;MÞ, which is the set of walks of length ‘ in M that start at i. The

convention we use above is in keeping with thinking of a walk in B(a)⊤ capturing the direc-
tion in which benefits flow; recall the discussion in Sec. 3.2.

31 For such an agent i, uiðaÞ 5 2ai .
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A quick inspection of figure 3 suggests that each original team mem-
ber might most prefer admitting a new teammember who can work with
him directly. However, it is also worth noting that 3 is the only member
of the original team that provides benefits to both of the other original
team members. Increasing the effort of 3 could therefore be more effi-
cient than increasing the effort of 1 or 2. Moreover, recall that as the
Lindahl actions will be taken after the admission decision is made, those
who receive higher marginal benefits will make more effort (by theo-
rem 1 and the discussion at the start of this section). Perhaps, then, it
might be relatively efficient to admit 6, the potential “helper” of 3, to in-
duce 3 to take the highest possible action. It turns out that this is the
case, and this increased efficiency exceeds the direct benefits 1 or 2 can
receive from admitting 4 or 5. As a result, all the initial team members’
interests are actually aligned.
We now formalize this intuition, using the tools we have developed.

By theorem 1, agents’ Lindahl actions are given by their centralities in
B(a). Applying the scaling-indifference characterization of these actions,
JðaÞa 5 0, we find that the centrality action of agent i is characterized by
ai 5 oj ðGijajÞ=ð1 1 ajÞ. The unique32 centrality actions if no new team
members are admitted are a; if 4 is admitted they are a0; if 5 is instead
added, they are a00; and if 6 is added, they are a0 0 0, where in each vector
the last entry corresponds to the action taken by the new team member:

a 5

:408

:225

:290

—

0BBBBB@

1CCCCCA a0 5

:523

:256

:343

:343

0BBBBB@

1CCCCCA a00 5

:462

:286

:316

:222

0BBBBB@

1CCCCCA a000 5

:497

:279

:386

:279

0BBBBB@

1CCCCCA:

If added, 4 will take a higher action than 6, who will take a higher ac-
tion than 5. However, the inclusion of 6 induces agent 3 to take the high-
FIG. 3.—A, The original negotiators and who among them can benefit whom. B, Bene-
fits accruing to and coming from potential additional negotiators.
32 Uniqueness is established by noting that each agent’s preferences satisfy the gross sub-
stitutes property, and therefore the Lindahl outcome is unique (McKenzie 1960).
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est action, providing indirect benefits to both 1 and 2. The utility vectors
for the original negotiators, when the centrality action profiles are played,
are shown below for the options of, in order, admitting nobody, admit-
ting 4, admitting 5, and admitting 6:

u að Þ 5
:049

:030

:052

0BB@
1CCA u a0ð Þ 5

:074

:040

:077

0BB@
1CCA u a00ð Þ 5

:064

:039

:064

0BB@
1CCA

 u a000ð Þ 5
:076

:048

:078

0BB@
1CCA:

Thus, the incentivesof theoriginal teammembers areperfectly aligned.
Even though different potential additions benefit different original team
members, all prefer admitting 6 to admitting 4 to admitting 5 to admit-
ting nobody. The indirect benefit flows from admitting agent 6 outweigh
thedirect benefitflows agents 1 and2would receive fromadmitting agent 4
or 5.
While in general the incentives of agents need not be aligned when de-

ciding whom to include in a team, studying the network structure of the
externalities can help us understand the implications of including differ-
ent team members. One general lesson is that team members who have
the potential to provide benefits to many others realize this potential
when they are the beneficiaries of links from new members.
B. Endogenous Status Quo
In the main analysis, we made assumptions so that the Nash equilibrium
action profile was 0 (the corner of the nonnegative orthant, in which ac-
tions lie) and argued that this was essentially a normalization. While con-
venient for some purposes, this setup is not suited for others, such as
studying thedifferencebetweenNash andLindahl outcomeswhen changes
in the environment cause both to change. In this section, we endogenize
the status quo, making it the Nash equilibrium of a simultaneous-move
public goods contribution game. To this end, suppose that assumptions 2
(positive externalities), 3 (irreducibility), and4 (bounded improvements)
continue to hold but that we relax assumption 1 (costly actions). Consider
now a simultaneous-move game in which each agent chooses an action
ai ∈ R1.
Consider a Nash equilibrium action profile aNE, defined by the condi-

tion that aNE
i 5 argmaxai

uiðai, aNE
2i Þ. By the concavity of the utility func-

tions, for all i, we have ∂uiðaNEÞ=∂ai ≤ 0, with equality holding if aNE
i > 0.
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Take the actions aNE as the status quo. For any a, define â ≔ a 2 aNE to
be the increment of a given action profile over the Nash equilibrium ac-
tion profile. Also, define the utility profile ûðâÞ ≔ uðaNE 1 âÞ. With the ac-
tion space and utility profiles reparameterized in this way, the status quo
action profile â 5 0 is the Nash equilibrium action profile, and the ratio
∂ûið0Þ=∂âi ≤ 0 for all i. The assumption â ≥ 0, which is maintained for our
analysis, entails that players do not take actions below their Nash equilib-
rium actions.33

There are then two cases to consider. If ∂ûið0Þ=∂âi < 0 for all i (case I),
then assumptions 1–4 all hold for the environment given by û, and our
results go through unchanged. If ∂ûið0Þ=∂âi 5 0 for some i (case II),
then assumption 1 will be violated. This prevents us from directly apply-
ing our results. However, this is a technical rather than a substantive
problem, as we show now. Indeed, in case II, the proofs of proposition 1
and theorem 1 go through with some modification.
For proposition 1, to show that Pareto efficiency of an interior a* im-

plies that Bða*; ûÞ has spectral radius 1, we can again start by looking at
the first-order condition vJða*; ûÞ 5 0 for some nonzero v ∈ Rn

1. We can-
not immediately divide each row of this equation by 2 Jiiða*; ûÞ 5
2∂ûiða*; ûÞ=∂ai to convert this into vBða*; ûÞ 5 v, because that might
involve dividing by 0. So first we argue that any a* satisfying the first-
order conditions must have Jiiða*; ûÞ < 0 for every i. This is precisely the
content of the following lemma, whose proof is deferred to appendix C.
Lemma 1. Take any utility profile û satisfying assumptions 2 and 3,

with ∂ûiðâ; ûÞ=∂âi ≤ 0 for every i and every â. If the first-order condition
vJða*; ûÞ 5 0 holds for a nonzero vector of Pareto weights, v ∈ Rn

1, then
Jiiða*; ûÞ < 0 for every i.
With this lemma in hand, the proof of proposition 1 can continue as

before. The intuition for the lemma is simple: for any â, we can construct
a new ~u so that Jiiðâ; ~uÞ is negative but very small whenever it was zero un-
der û, and Jðâ; ûÞ is unchanged otherwise. Now Bðâ; ~uÞ is irreducible and
thus contains cycles; by making the cost we have introduced sufficiently
small, we can make the value of these cycles very large, which, as shown
in Section III.B, creates a Pareto improvement, guaranteeing that â is
not an efficient point under ~u. It is therefore not efficient under û, ei-
ther.
The following corollary shows that nonzero Nash equilibrium action

profiles are inefficient.
Corollary 1. The Nash equilibrium action profile is Pareto effi-

cient only if it is the zero action profile.
33 This restriction makes sense when investments are irreversible, though our main re-
sults would have analogues without it.
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Proof. Suppose that there is a Nash equilibrium action profile (be-
fore parameterization) aNE so that aNE

i > 0 for some i. Then JiiðaNE; uÞ 5
Jiið0; ûÞ 5 0. So by lemma 1, aNE cannot solve the Pareto problem. QED
When the Nash equilibrium action profile is zero, every agent might

be up against the lower bound andmight prefer to take lower actions that
are unavailable. This could occur if actions correspond to irreversible
investments (perhaps sunk investments in clean energy), a Nash equilib-
rium is played, and then some parameter of the environment changes,
causing the Nash equilibrium actions to decrease. Then, even though the
positive benefits of higher actions are neglected in the private decision of
howmuch effort to exert, the zero action can be Pareto efficient. The pos-
itive marginal benefits that would accrue to others may not cover the pri-
vate marginal costs of higher actions.
Like proposition 1, theorem 1 extends to the case in which the status

quo actions are a Nash equilibrium. Indeed, the existing proofs go
through, using the newly strengthened proposition 1 we have just dis-
cussed.
Having handled the technical issues in defining our solution with a

general Nash equilibrium status quo, we can draw on the network games
literature pioneered by Ballester et al. (2006) to characterize the Nash
equilibrium status quo and compare it to the Lindahl action profile.
However, to use results from this literature, it is convenient to look at a
special case of our setting. Let G be an undirected, unweighted graph
(gij 5 gji ∈ f0, 1g) with no self-links (gii 5 0), describing which agents
are neighbors. For a matrix M we let

lmin Mð Þ ≔ min lj j : l is an eigenvalue of  Mf g:
Suppose that utility functions are given by

ui að Þ 5 b ai 1 do
j

gijaj

 !
2 ai ,

where b is a strictly increasing and convex function and lminðGÞ < 1=d.
Note that in this formulation, an agent’s neighbors’ actions are prefect
substitutes for one another.
Proposition 4 (Bramoullé et al. 2014). Given the above assump-

tions, there is a unique Nash equilibrium.
To further compare the Nash equilibrium and Lindahl outcomes, let

G be a regular graph in which all agents have k links (and continue to
assume that lminðGÞ < 1=d). Let bðxÞ 5 b 0ðxÞ. The unique Nash equi-
librium is then symmetric, with aNE 5 aNE

i 5 b21ð1Þ=ð1 1 dkÞ. Given the
above utilities, at an action profile where the benefits matrix is well de-
fined, for i ≠ j the ij th entry of the benefits matrix is
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Bij að Þ 5 gij
db ai 1 doj gijaj

� �
2 b ai 1 doj gijaj

� �
2 1

� � :
We now apply theorem 1. It is helpful to write Lindahl equilibrium ac-

tions as aLE 5 aNE 1 â. As theNash equilibrium is the status quo, theorem 1
then adjusts so that BðaLEÞâ 5 â or, equivalently, BðaLEÞðaLE 2 aNEÞ 5
ðaLE 2 aNEÞ. We therefore have that

aLE
i 2 aNE

i 5 o
j

gij
db aLE

i 1 doj gija
LE
j

� �
1 2 b aLE

i 1 doj gija
LE
j

� � aLE
j 2 aNE

j

� �
,

for all i. There is then a Lindahl equilibrium in which all agents take the
same action and34

aLE 5 aLE
i 5

b21 1= 1 1 kdð Þð Þ
1 1 kd

>
b21 1ð Þ
1 1 dk

5 aNE
i 5 aNE:

The Nash equilibrium actions are decreasing in k and d. Intuitively, at
higher values of k and d there is more free riding on the actions of other
agents, and agents choose lower actions in equilibrium. Interestingly,
even though the increased externalities are internalized in the Lindahl
equilibrium, the Lindahl actions are not always increasing in the level of
externalities d.35 For example, when bð�Þ 5 logð�Þ, the Lindahl actions
are invariant with respect to d (and k). The intuition underlying this is
that when the benefits function is sufficiently concave, increasing d at
the current Lindahl equilibrium increases the agents’ consumption of
the public goods, causing the marginal benefits from further consump-
tion to decrease sufficiently that in the Lindahl equilibrium agents re-
duce their actions. Nevertheless, the presence of free riding in the Nash
equilibrium in comparison to the Lindahl equilibrium is observable
when comparing the Lindahl and Nash actions. The ratio of the Lindahl
to the Nash actions is increasing in k, d, and the concavity of the b.36
34 This calculation relies heavily on the symmetry of this problem. It would be interesting
to explore the difference between Lindahl and Nash outcomes more generally, although
also harder because the key quantities will only be implicitly defined.

35 Implicitly differentiating the first-order condition and rearranging gives

∂aLE
i

∂d
5 2

k

b 00 a 1 1 kdð Þð Þ 1 1 kdð Þ3 1 1 ab 00 a 1 1 kdð Þð Þ 1 1 kdð Þ2� �
, where a 5 aLE:

This expression is weakly greater than zero if and only if 2b 00ðað1 1 kdÞÞ ≤ 1=½að1 1 kdÞ2�.
36 As b is concave, b is strictly decreasing, so b21 is well defined and also strictly decreas-

ing. It follows that b21ð1=ð1 1 kdÞÞ is increasing in k and d.
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It is clear from the calculations that regularity played an essential role
in this example. To examine the same questions without imposing reg-
ularity, in Section OA7 of the online appendix, we consider a star graph,
such that one center agent is connected to all other agents, who have
only this link. Setting bð�Þ 5 logð�Þ, a specification under which any reg-
ular graph has Lindahl actions invariant in the level of externalities d,
we find that the center agent’s Lindahl action decreases in d, while the
periphery agents’ Lindahl actions are increasing in d. The ratio of the
Lindahl to Nash actions, as with regular graphs, is increasing in d.
C. Explicit Formulas for Lindahl Outcomes
Several measures of network centrality have been extensively employed
in the networks literature. In this section we use our results to provide
new foundations for three of them. We do so by linking each measure
to the Lindahl equilibrium under different parametric assumptions on
preferences.
The preferences we consider are

ui að Þ 5 2ai 1o
j

aGijaj 1 Hij logaj

� �
, (6)

where G and H are nonnegative matrices (networks) with zeros on
the diagonal (no self-links) and a < 1=r ðGÞ. Let hi 5 ojHij . For any pref-
erences in this family, the centrality property (a 5 BðaÞa) discussed
throughout the paper boils down to a 5 h 1 aGa.
Several special cases are worth considering. If a 5 0, then ai 5 hi , and

i ’s Lindahl action is equal to the total weight of i’s incoming links in H.
This measure of i’s centrality in the network H is known as i’s degree cen-
trality. If, instead, hi 5 1 for all i, then agents’ Lindahl actions are a 5
ðI 2 aGÞ211. The right-hand side is a differentmeasure of agents’ central-
ities in the network G, known as their Bonacich centralities. Like degree
centrality, Bonacich centrality depends on the number of i’s neighbors,
but it also depends on longer-range paths.37 Finally, in this setting, as a
approaches 1, agents’ actions become proportional to their normalized
eigenvector centralities in G. These results are further discussed in Sec-
tion OA8 of the online appendix.
As Lindahl outcomes are defined in terms of prices, the formulas we

have presented may be viewed as microfoundations or interpretations of
37 It can also be characterized via the equation a 5 aGa 1 1, which resembles the con-
dition defining eigenvector centrality. For more background and discussion, see Ballester
et al. (2006, sec. 3) and Jackson (2008, sec. 2.2.4).
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network centrality measures in terms of price equilibria. Each result says
that for particular preferences, the allocations defined by Lindahl are
equal to centralities, according to a corresponding measure. Such a con-
nection permits new interpretations of well-known centrality measures.
Beyond these interpretations, the connection between centrality mea-
sures and prices may permit new analytical techniques inspired by price
equilibria.
D. Approximating the Full Benefits of Negotiation
with Smaller Groups
There are often large costs involved in organizing a large multilateral ne-
gotiation, and therefore it is important to know when most of the benefits
of negotiating can be achieved by instead organizing negotiations in smaller
groups. Our framework allows us to give a simple analysis of the costs of sub-
dividing a negotiation.38

We consider an arbitrary Pareto efficient outcome a* that a planner
would like to achieve. We then suppose that the agents are divided into
two subsets,M andMc, and that a* is proposed to each. Then, each group
can contemplate deviations from a* that are Pareto improving for that
group. A group will generally have a Pareto-improving deviation of reduc-
ing efforts relative to a*, because as a group they pay all the costs of effort
but do not internalize any of the benefits to the complement.39

How cheaply can a planner incentivize agents to stay with the original
outcome rather than deviate? To quantify the cost of such incentives, we
imagine that the social planner can subsidize individuals’ effort, and we
ask when only a small amount of subsidy will be required to remove any
incentive for each group to move away from the target efficient point a*.
To that end, we set JiiðaÞ 5 21 for each i and all a, and we moreover

assume that there is a numeraire in which each agent could be paid—
one that enters his utility additively. We do not allow transfers among
the agents, but we do allow a planner to use transfers of this numeraire
(potentially required to be “small” in some sense) to subsidize individu-
als’ efforts. Thus, we posit that the planner can modify the environment
to one with payoff functions,

~ui að Þ 5 ui að Þ 1 mi að Þ,
38 We are grateful to an anonymous reviewer for suggesting this analysis.
39 To prove this formally, one can use a strict version of fact 1b to show that the benefits
atrix restricted to just one group has a largest eigenvalue strictly less than 1 (assuming
at the benefits matrix among the grand coalition was irreducible) and then use propo-
tion 6 (app. B) to show that some reduction of all actions yields a Pareto improvement.
m
th
si
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where mi(a) must be nonnegative. We say that the profile ðmiÞi∈N deters de-
viations from a* if the restriction of a* toM is Pareto efficient for the pop-
ulationM with preferences ð~uiðaÞÞi∈N and the analogous statement holds
for Mc. We care about bounding the cost of separation cM(a*), defined as
the infimum of oi∈Nmiða*Þ—payments made by the planner at the imple-
mented outcome—taken over all profiles ðmiÞi∈N that deter deviations
from a*.
Proposition 5. Consider a Pareto efficient outcome a*, and let v be

the corresponding Pareto weights. Then,

cM a*ð Þ ≤ o
vi

vj
Bij a*ð Þa*j ,

where the summation is taken over all ordered pairs (i, j) such that one
element is in M and the other is in Mc.
In graph theory terms, this is the weight of the cut M in a weighted

graph derived from B(a*), whose edge weights are Wij 5 ðvi=vjÞBijða*Þa*j .
When a* and v are held fixed, the bound in the proposition becomes small
if the network given by B(a*) has only a small total weight on links across
groups. Note that it is the properties of marginal benefits that are key—
given this result, a negotiation can be very efficiently separable even when
the separated groups provide large total (i.e., inframarginal) benefits to
each other.
The question of when one can find a split with this property is dis-

cussed in a large literature in applied mathematics. One conclusion is
that if there is another eigenvalue of B(a*) near its largest eigenvalue (1
in this case, since a* is efficient), then such a split exists (Hartfiel and
Meyer 1998).40 (The difference between the largest and second-largest
eigenvalues is often referred to as the spectral gap.) Thus, eigenvalues of
B(a*) other than the largest have economic implications in our setting.
VI. Concluding Discussion
In this section, we discuss the extent to which some of our more econom-
ically restrictive assumptions can be relaxed, elaborate on how our work
fits into several related literatures, and offer some concluding remarks.
A. Relaxing Assumptions
The assumption of a single dimension of effort per agent is relaxed in
Section OA1 of the online appendix, which introduces a benefits matrix
for each dimension and characterizes efficient outcomes via the eigen-
40 For a survey of some related results, see von Luxburg (2007).
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vectors and eigenvalues of these matrices and Lindahl outcomes via scal-
ing indifference. The implicit assumption of no transfers of a numeraire
(“side payments” separate from the actions) is relaxed in Section OA2 of
the online appendix, where we give the analog of the Samuelson condi-
tion from public finance in our setting.
An important and restrictive assumption we make is that all external-

ities are positive. This environment is equivalent to one with negative ex-
ternalities in which it is costly to decrease actions. For example, in our
simple example in Section I, the action towns take can be seen as reduc-
ing their pollution by producing less.
The case of both positive and negative externalities is more challeng-

ing, and we now discuss the extent to which assumption 2 can be relaxed.
The key mathematical result we lean on throughout our analysis is the
Perron-Frobenius theorem, which applies only to nonnegative matrices.
However, there are generalizations of the theorem in which the assump-
tion of nonnegativity is weakened (see, e.g., Johnson and Tarazaga 2004;
Noutsos 2006). The weaker assumptions essentially require that the pos-
itive externalities dominate the negative externalities. For example, one
sufficient condition is that all entries of B‘(a) are positive for all suffi-
ciently large ‘, which is related to walks in the network (see Sec. V). We
consider the more restrictive environment only for simplicity.
B. Related Literature
A recent literature has found a connection between the Nash equilibria
of one-shot games in networks and centrality measures in those net-
works. Key papers in this literature include Ballester et al. (2006) on skill
investment with externalities and Bramoullé et al. (2014) on local public
goods. Most recently, Allouch (2015) has studied a network version of the
setting introduced by Bergstrom, Blume, and Varian (1986) on the volun-
tary (static Nash) private provision of public goods. Generalizing results
of Bramoullé et al. (2014), he derives comparative statics of public goods
provision using network centrality tools.41 Unlike our approach, results in
this literature typically require best responses to take a particular paramet-
ric form.42 Another, more fundamental difference is that the games we fo-
cus on in Section IV.B.1 are designed to overcome the free riding present
in the private provision models; in contrast, the games studied in the pa-
pers mentioned above do not share this feature, and so the Nash equilib-
ria are typically inefficient (see Sec. V.B for more on this). A recent paper
41 These papers contain more complete discussions of this literature. See also Bramoullé
and Kranton (2007).

42 For some recent work in which parametric assumptions have been relaxed in the con-
text of network formation, see Baetz (2015) and Hiller (2017).
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from that literature, perhaps closest to our work insofar as network cen-
trality is related to prices in a market, is Chen, Zenou, and Zhou (2018).
There, two firms each offer a different substitutable product to consum-
ers embedded in a network where consumers’ utilities depend on their
neighbors’ consumptions. The firms can price discriminate, and using the
technology developed by Ballester et al. (2006), equilibrium prices in this
market are tied to agents’ centralities in the network. Key differences re-
main insofar as the markets in that paper are not competitive and deci-
sions are unilateral and only privately optimal.
In emphasizing the correspondence between centrality and outcomes

of a competitive market, our perspective is related to that of Du et al.
(2015), who find a connection between eigenvector centrality and out-
comes in an exchange economy with Cobb-Douglas preferences. The
parametric forms required to relate outcomes explicitly to familiar cen-
trality measures differ in the two models, but both papers share the per-
spective that centrality andmarkets are closely related, and each concept
can be used to shed light on the other. An advantage of the public goods
economy we study is that our explicit characterizations discussed in Sec-
tion V.C are a special case of an eigenvector characterization that applies
without parametric assumptions. We believe that these projects, taken to-
gether, offer hope for a fairly rich theory of connections between market
outcomes and network centrality.
Conitzer and Sandholm (2004) study “charity auctions,” which, like the

strategic settings we discuss in Section IV.B, are intended to implement
Pareto improvements in the presence of externalities. In that model,
agents condition their charitable contributions on others’ contributions
and so choose action vectors that are reminiscent of the directions cho-
sen in the bargaining game of Section IV.B.1. A paper taking this ap-
proach in a network context is Ghosh and Mahdian (2008). Their model
locates people on a social network and assumes that they benefit linearly
from their neighbors’ contributions, with a cap on howmuch any individ-
ual can contribute. There is an equilibrium of their game that achieves
themaximum possible feasible contributions (subject to individual ratio-
nality), and this involves positive contributions being made if and only if
the largest eigenvalue of the fixed network is greater than 1.
Understanding how the presence of externalities affects classical solu-

tions (often ones inspired by markets) is an active area of research more
broadly. For instance, a recent contribution by Pycia and Yenmez (2015)
generalizes classical matching algorithms and characterizations to set-
tings with both positive and negative externalities.
C. Conclusions
Many practical problems, such as preventing harmful climate change,
entail a tragedy of the commons. It is in each agent’s interest to free-ride
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on the efforts of others. A question at the heart of economics, and of in-
tense public interest, is the extent to which negotiations can overcome
such problems and lead to outcomes different from, and better than,
the outcomes under noncooperative, voluntary provision. Our thesis is
that, in addressing this problem, it is informative to study the properties
of a network of externalities.
Cycles in this network are necessary for there to be any scope for a Pa-

reto improvement, and summing these cycles in a certain way identifies
whether a Pareto improvement is possible or not. We can use this insight
to identify which agents, or sets of agents, are essential to a negotiation
in the sense that their participation is necessary for achieving a Pareto
improvement on the status quo.
Moreover, a measure of how central agents are in this network—eigen-

vector centrality—characterizes which actions agents would take under
the Lindahl solution. In our environment, the Lindahl solution is more
than just a hypothetical construct describing what we could expect if miss-
ing markets were somehow completed. The Lindahl outcomes corre-
spond to the efficient equilibria of a bargaining game. Moreover, an
implementation-theoretic analysis selects the Lindahl solutions as ones
that are particularly robust to the specification of the negotiation game.
From the eigenvector centrality characterization of Lindahl outcomes,

we can see that agents’ actions are determined by a weighted sum of the
marginal benefits they receive, as opposed to the marginal benefits they
can provide to others.43 This has implications for the design of negotia-
tions. If there is an agent who is in a particularly strong position to pro-
vide direct and indirect benefits to others, it will be especially important
to include others in the negotiation who can help this agent. Our results
formalize this intuition and can be used to quantify the associated trade-
offs in the formation of a team.
Several interesting questions remain unanswered. Our focus on effi-

cient outcomes presupposes group cooperation; but if the group can co-
operate and commit as a whole, it is worth worrying about the possibility
that a subset of the agents may coordinate on a deviation from some de-
sired outcome. In Section IV.B.3, we note that Lindahl outcomes are
robust to coalitional deviations, assuming that nondeviators revert to
no effort, but realistic consequences of a coalition’s reneging are more
complex. Are there efficient outcomes that are robust to deviations even
with a richer model of the postreneging subgame, and how do such out-
comes relate to properties of the benefits network?
Other natural questions include What incentives are there for invest-

ments that increase the benefits agents can confer on each other? In
43 The most explicit version of this statement is in Sec. OA8.3 of the online appendix, in
which we calculate that the weights of incoming walks according to an exogenous network
fully determine equilibrium efforts.
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what sense does the spectral radius provide an appropriate measure of
how much scope for cooperation there is? In applications such as trade
liberalization, where there are multiple actions available to the different
agents, how should negotiations be designed?
Appendix A

The Perron-Frobenius Theorem

The key mathematical tool we use is the Perron-Frobenius theorem. We state it
here for ease of reference and to enumerate the various parts of it that we rely on
at different points in the paper.44

Theorem (Perron-Frobenius). Let M be an irreducible, square matrix with
no negative entries and spectral radius r(M). Then,

(1) The real number r(M) is an eigenvalue of M.
(2) There is a vector p (called a Perron vector) with only positive entries such

that Mp 5 r ðMÞp.
(3) If v is a nonzero vector with nonnegative entries such that Mv 5 qv for

some q ∈ R, then v is a positive scalar multiple of p, and q 5 r ðMÞ.
Note that because a matrix has exactly the same eigenvalues as its transpose,
all the same statements are true, with the same eigenvalue r ðMÞ 5 r ðM⊤Þ, when
we replace M by its transpose M⊤. This observation yields a left-hand Perron ei-
genvector ofM, that is, a row vector w such that wM 5 rðMÞw. For nonsymmetric
matrices, it is typically the case that w⊤ ≠ p. The analogue of statement 3 in the
theorem holds for w.
Appendix B

Egalitarian Pareto Improvements

This appendix serves two purposes. First, it presents a result that is of interest in
its own right, clarifying the sense in which the spectral radius of the benefits ma-
trix measures the magnitude of inefficiency rather than merely diagnosing that
there is some inefficiency. Second, it introduces some terminology and results
that are useful in subsequent proofs, particularly the proof of proposition 2, which
establishes the existence of a centrality action profile.

Let Dn denote the simplex in Rn
1 defined by Dn 5 fd ∈ Rn

1 : oi di 5 1g.
Definition 4. The bang-for-the-buck vector b(a, d) at an action profile a along

a direction d ∈ Dn is defined by

bi a, dð Þ 5 oj : j≠i Jij að Þdj

2Jii að Þdi

:

44 Meyer (2000, sec. 8.3) has a comprehensive exposition of this theorem, its proof, and
related results.
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This is the ratio

i’s marginal benefit
i’s marginal cost

evaluated at a, when everyone increases actions slightly in the direction d. We say
that a direction d ∈ Dn is egalitarian at a if all the entries of bi(a, d) are equal.

Proposition 6. At any a, there is a unique egalitarian direction deg(a). Every
entry of b(a, deg(a)) is equal to the spectral radius of B(a).

Proposition 6 shows that for any action profile a, there is a unique egalitarian
direction in which actions can be changed at a to equalize the marginal benefits
per unit of marginal cost accruing to each agent and that this benefit-to-cost ra-
tio will be equal to the spectral radius of B(a). Thus, the spectral radius of B(a),
when it exceeds 1, is a measure of the size of egalitarian Pareto improvements
available by increasing actions. (A corresponding interpretation applies when
the spectral radius is less than 1.)

Proof. Fix a and denote by r the spectral radius of B(a). Since B(a) is nonneg-
ative and irreducible, the Perron-Frobenius theorem guarantees that B(a) has a
right-hand eigenvector d such that

B að Þd 5 rd: (B1)

This is equivalent to bða, dÞ 5 r1, where 1 is the column vector of ones. There-
fore, there is an egalitarian direction that generates a bang for the buck of r (the
spectral radius of B(a)) for everyone.

Now suppose that ~d ∈ Dn is any egalitarian direction; that is, for some b we
have

b a, ~d
� �

5 b1 :

This implies

B að Þ~d 5 b~d: (B2)

By the Perron-Frobenius theorem (statement 3), the only real number b and vec-
tor ~d ∈ Dn satisfying equation (B2) are b 5 r and ~d 5 d.

Thus, degðaÞ 5 d has all the properties claimed in the proposition’s statement.
QED
Appendix C

Omitted Proofs

Proof of Proposition 1

We first prove part a. For any nonzero v ∈ Rn
1, define PðvÞ, the Pareto problem

with Pareto weights v, as

maximizeo
i∈N

viui að Þ subject to a ∈ Rn
1:

Suppose that an interior action profile a* is Pareto efficient. Assumption 1 guar-
antees that Jii(a*) is strictly negative. We may multiply utility functions by positive
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constants to achieve the normalization Jiiða*Þ 5 21 for each i. This is without
loss of generality. It clearly does not affect Pareto efficiency, and it easy to see that
scaling utility functions does not affect B(a*). Since a* is Pareto efficient, it solves
PðvÞ for some nonzero v ∈ Rn

1 (this is a standard fact for concave problems).
And therefore a* satisfies PðvÞ’s system of first-order conditions: vJða*Þ 5 0. By
our normalization, JðaÞ 5 BðaÞ 2 I, where I is the n-by-n identity matrix, so
the system of first-order conditions is equivalent to vBða*Þ 5 v.

This equation says that B(a*) has an eigenvalue of 1 with corresponding left-
hand eigenvector v. Since B(a*) is a nonnegative matrix, and is irreducible by
assumption 3, the Perron-Frobenius theorem applies to it. That theorem says
that the only eigenvalue of B(a*) that can be associated with the nonnegative ei-
genvector v is the spectral radius itself.45 Thus, the spectral radius of B(a*) must
be 1.

Conversely, suppose that B(a*) has a spectral radius of 1, and again normalize
each i’s utility function so that Jiiða*Þ 5 21. The Perron-Frobenius theorem
guarantees that B(a*) has 1 as an eigenvalue and also yields the existence of a
nonnegative left-hand eigenvector v such that vBða*Þ 5 v. Consequently, the
first-order conditions of the Pareto problem PðvÞ are satisfied (using the manip-
ulation of the first-order conditions we used above). By the assumption of con-
cave utilities, it follows that a* solves the Pareto problem for weights v (i.e.,
the first-order conditions are sufficient for optimality), and so a* is Pareto effi-
cient.

We now prove part b, starting with the case in which assumption 3 holds.
If r ðBð0ÞÞ > 1, then proposition 6 in appendix B yields an egalitarian direction

at 0 with bang for the buck exceeding 1; this is a Pareto improvement at 0.
If 0 is not Pareto efficient, there is an a0 ∈ Rn

1 such that uiða0Þ ≥ uið0Þ for each
i, with strict inequality for some i. Using assumption 3, namely, the irreducibility
of B(a0), as well as the continuity of the ui, we can find an a00 with all positive en-
tries so that uiða00Þ > uið0Þ for all i.46 Let v denote the derivative of u(za00) in z eval-
uated at z 5 0. This derivative is strictly positive in every entry, since (by convex-
ity of the ui) the entry vi must exceed ðuiða00Þ 2 uið0ÞÞ=a 00

i . By the chain rule,
v 5 Jð0Þa00. From the fact that v is positive, we deduce via simple algebraic manip-
ulation that there is a positive vector w so that Bð0Þw > w. And from this it follows
by the Collatz-Wielandt formula (Meyer 2000, eq. 8.3.3) that the spectral radius
of B(0) exceeds 1.

Now consider the case in which assumption 3 does not hold.
First, suppose that r ðBð0ÞÞ > 1. Then the same is true when B(0) is replaced by

one of its irreducible blocks, and in that case a Pareto improvement on 0 (involv-
ing only the agents in the irreducible block taking positive effort) is found as
above. So 0 is not Pareto efficient.
45 See statement 3 of the theorem in app. A.
46 Suppose otherwise, and let a00 be chosen so that uða00Þ 2 uð0Þ ≥ 0 (note that this is pos-

sible, since a00 5 a0 satisfies this inequality) and so that the number of 0 entries in
uða00Þ 2 uð0Þ is as small as possible. Let S be the set of i for which uiða00Þ 2 uiðaÞ > 0. Then
by irreducibility of benefits, we can find j ∈ S and k ∉ S such that Jkjð0Þ > 0. Define
a 000

j 5 a 00
j 1 ε and a 000

i 5 a 00
i for all i ≠ j . If ε > 0 is chosen small enough, then by continuity

of the ui we have uiða000Þ 2 uiðaÞ > 0 for all i ∈ S , but also ukða000Þ 2 ukðaÞ > 0, contradicting
the choice of a0.
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Conversely, suppose that 0 is not Pareto efficient. There is an a0 ∈ Rn
1 such that

uiða0Þ ≥ uið0Þ for each i, with strict inequality for some i. Let P 5 fi : a 0
i > 0g be

the set of agents taking positive actions at a0. And let B̂ð0Þ be obtained by restrict-
ing B(0) to P (i.e., by throwing away rows and columns not corresponding to in-
dices in P). For each i ∈ P , there is a j ∈ P such that B̂ijð0Þ > 0; otherwise, i would
be worse off than at 0. Therefore, there is a cycle in B̂ð0Þ.47 And it follows, shrink-
ing P if necessary, that B̂ð0Þ is irreducible when restricted to P. Next, applying the
argument of footnote 46, we can find a00 such that uiða00Þ > uið0Þ for each i ∈ P .
From this point, we can argue as above48 to conclude that r ðB̂ð0ÞÞ > 1. Since
B̂ð0Þ is a submatrix of B(0), by fact 1, r ðBð0ÞÞ > 1. QED
Proof of Theorem 1

We first prove the following lemma.
Lemma 2. If a* ≠ 0 is a Lindahl outcome for preference profile u, then

a* ∈ Rn
11.

Proof. Assume, toward a contradiction, that a* has some entries equal to 0.
Let P be a matrix of prices that support a* as a Lindahl outcome. Let S be
the set of i so that a*i 5 0, which is a proper subset of N, since a* ≠ 0. By assump-
tion 3 (connectedness of benefit flows), there is an i ∈ S and a j ∉ S so that
Jijða*Þ > 0. We argue that this implies

Pij > 0:

If this were not true, then an a ≠ a* in which only j increases his action slightly
relative to a* would satisfy inequality (BBi(P)) in definition 1 and be preferred by
i to the outcome a*, contradicting the definition of a Lindahl outcome.

Now consider (BBi(P)
0), the budget balance condition of agent i, at the out-

come a*:

o
k : k ≠i

Pika*k ≤ a*i o
k : k ≠i

Pki :

Since a*i 5 0, the right-hand side of this is 0. But Pij > 0, and a*j > 0 (since j ∉ S),
so the left-hand side is positive. That is a contradiction. QED

It is now convenient to use an equivalent definition of Lindahl outcomes.
Definition 5. An action profile a* is a Lindahl outcome for a preference

profile u if there exists an n-by-n matrix P with each column summing to 0, so
that the following conditions hold for every i: (a) the inequality

o
j ∈N

Pijaj ≤ 0 (BBi(P))

is satisfied when a 5 a*; and (b) for any a such that inequality (cBBiðPÞ) is satis-
fied, we have uiða*Þ ≥ uiðaÞ.

ðcBBi Pð ÞÞ
47 Recall the definition in Sec. III.B.
48 The Collatz-Wielandt formula does not assume irreducibility.
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Given a Lindahl outcome defined as in definition 1, set Pii 5 2oj : j≠i Pji to find
prices satisfying the new definition.49 Conversely, the prices of definition 5 work
in definition 1 without modification, since the original definition does not in-
volve the diagonal terms of P at all.

We now show that b implies a. Suppose that a* ∈ Rn
1 is a nonzero Lindahl out-

come. Lemma 2 implies that a* ∈ Rn
11 or, in other words, that a* has only posi-

tive entries. Let P be the matrix of prices satisfying the conditions of definition 5.
Consider the following program for each i ∈ N , denoted by Pi(P):

maximizeui að Þ subject to a ∈ Rn
1 and cBBi Pð Þ:

By definition of a Lindahl outcome, a* solves Pi(P). By assumption 3, there is
some agent j ≠ i such that increases in his action aj would make i better off.
Arguing as in the proof of lemma 2, it holds that Pij > 0. Therefore, the budget
balance constraint cBBiðPÞ is satisfied with equality, so that Pa* 5 0. Because a*

is interior, the gradient of the maximand ui must be orthogonal to the constraint
set given by inequality cBBiðPÞ. In other words, row i of J(a*) is parallel to row i
of P. These facts together imply that Jða*Þa* 5 0 and so Bða*Þa* 5 a* (see
Sec. IV.B.1).

We now show that a implies b. Since a* is a nonnegative right-hand eigenvector
of B(a*), the Perron-Frobenius theorem guarantees that 1 is a largest eigenvalue
of B(a*). Arguing as in the proof of proposition 1a, we deduce that there is a
nonzero vector v for which vJða*Þ 5 0. We need to find prices supporting a*

as a Lindahl outcome. Define the matrix P by Pij 5 vi Jijða*Þ, and note that for
all j ∈ N we have

o
i∈N

Pij 5 o
i∈N

vi Jij a*ð Þ 5 vJ a*ð Þð Þj 5 0, (C1)

where (vJ(a*))j refers to entry j of the vector vJ(a*).
Note that Bða*Þa* 5 a* implies Jða*Þa* 5 0 and that each row of P is just a

scaling of the corresponding row of J(a*). We therefore have

Pa* 5 0: (C2)

We claim that, for each i, the vector a* solves Pi(P). This is because the gradi-
ent of ui at a*, which is row i of J(a*), is normal to the constraint set by construc-
tion of P. Moreover, by equation (C2), a* satisfies the constraint (cBBiðPÞ). The
claim then follows by the concavity of ui. QED

Proof of Proposition 2

We use the Kakutani fixed-point theorem to find a centrality action profile. De-
fine Y 5 fa ∈ Rn

1 : mini ½ JðaÞa�i > 0g, the set of action profiles a at which every-
49 In essence,2Pii is the total subsidy agent i receives per unit of effort, equal to the sum
of personalized taxes paid by other people to him for his effort.
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one has positive gains from scaling a up. It is easy to check that Y is convex.50

Also, Y is bounded by assumption 4. Thus, �Y , the closure of Y, is compact.51

Define the correspondence F : �Y ∖f0g⇉ �Y by

F að Þ 5 la ∈ �Y : l ≥ 0 and min
i

J lað Það Þi ≤ 0
n o

:

This correspondence, at an argument a, has in its image all actions la (i.e., on
the same ray as a) such that, at la, at least one agent does not want to further
scale up actions. Finally, recalling the definition of deg(a) from appendix B, de-
fine the correspondence G : �Y ⇉ �Y by

G að Þ 5 F deg að Þð Þ:
Note that deg(a) is always nonzero, so that the argument of F is in its domain.52

The function deg is continuous (Wilkinson 1965, 66–67), and F is clearly upper
hemicontinuous, so it follows that G is upper hemicontinuous. Finally, from
the definitions of Y and F it follows that F is nonempty-valued.53 Since �Y is a com-
pact and convex set, the Kakutani fixed-point theorem implies that there is an
a ∈ �Y such that a ∈ F ðdegðaÞÞ. Writing â 5 degðaÞ, this means that there is some
l ≥ 0 such that minið JðlâÞâÞi ≤ 0. Let a* 5 lâ. We argue that a* satisfies scaling
indifference (and is therefore a centrality action profile).

Suppose that a* ≠ 0. Then by continuity of the function l↦ JðlâÞâ, there is
some i for which we have ½ Jða*Þâ�i 5 0, so that some player’s marginal benefit
to scaling is equal to his marginal cost. Since â is an egalitarian direction at
the action profile a*, the equation ½ Jða*Þâ�i 5 0 must hold for all i, and therefore
Jða*Þâ 5 0. Since â and a* are scalings of each other, we deduce that Jða*Þa* 5 0.
The condition Jða*Þa* 5 0 and assumption 3—connectedness of benefit flows—
imply that a* ∈ Rn

11.
If a* 5 0, consider the bang-for-the-buck vector bð0, âÞ, which corresponds to

starting at 0 and moving in the egalitarian direction â. Because â is egalitarian,
we can write bð0, âÞ 5 b1 for some b. And we can deduce that b is no greater than
50 Given a, a0 ∈ Y , and l ∈ ½0, 1�, define a00 5 la 1 ð1 2 lÞa0. Note that for all i ∈ N and
ε ≥ 21,

ui 1 1 εð Þa00ð Þ ≥ lui 1 1 εð Það Þ 1 1 2 lð Þui 1 1 εð Þa0ð Þ
by concavity of the ui. Differentiating in ε at ε 5 0 yields the result.

51 It is tempting to define Y 5 fa ∈ Rn
1 : minið JðaÞaÞi ≥ 0g instead and avoid having to

take closures, but this set can be unbounded even when �Y as we defined it above is bounded.
For example, our assumptions do not exclude the existence of an (infinite) ray along which
miniðJðaÞaÞi 5 0.

52 Even though the domain of F is not a compact set, G is a correspondence from a com-
pact set into itself.

53 Toward a contradiction, take a nonzero a such that F(a) is empty. Let �l be the maxi-
mum l such that la ∈ �Y ; such a �l exists because a is nonzero and �Y is compact. Since
Jð�laÞa > 0, it follows that for all i,

dui 1 1 εð Þ�lað Þ
dε

����
ε50

> 0,

from which it follows that ð�l 1 dÞa ∈ Y for small enough d. This contradicts the choice of
�l (recalling the definition of Y).
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1—otherwise, F ðâÞ would not contain a* 5 0. By proposition 6, it follows that
r ðBð0ÞÞ ≤ 1. Then, 0 is Pareto efficient by proposition 1b. QED

Proof of Proposition 3

Let W↑
i ð‘;MÞ be the set of all walks of length ‘ in a matrix M starting at i, so that

wð1Þ 5 i. The proof follows immediately from the following observation.
Fact 2. For any irreducible, nonnegative, aperiodic matrix Q and any i, j,

pi
pj

5 lim
‘→∞

ow ∈W↑
i ‘;Qð Þ v w;Qð Þ

ow ∈W↑
j ‘;Qð Þ v w;Qð Þ ,

where p is any nonnegative right-hand eigenvector of Q (i.e., a right-hand Per-
ron vector in the terminology of app. A).

Proof. Note that the formula above is equivalent to

pi
pj

5 lim
‘→∞

ok Q‘½ �ik
ok Q‘
� �

jk

, (C3)

where [Q‘]ik denotes the entry in the (i, k) position of the matrix Q‘. To prove
equation (C3), let r 5 rðQÞ and note that

lim
‘→∞

Q

r

� �‘

5 w⊤p, (C4)

where w is a left-hand Perron vector ofQ and p is a right-hand Perron vector (re-
call app. A). This is statement (8.3.13) in Meyer (2000); the hypothesis that Q is
primitive in that statement follows from the assumed aperiodicity of Q (see the-
orems 1 and 2 of Perkins [1961]). To conclude, observe that equation (C4) di-
rectly implies equation (C3). QED

To prove the proposition from fact 2, setQ 5 BðaÞ 5 M⊤ andnote that then the
right-hand side of the equation in fact 2 is equal to the right-hand side of the equa-
tion in proposition 3. The statement that a has the centrality property is equivalent
to the statement that a is a right-hand Perron eigenvector ofQ 5 BðaÞ.

Proof of Lemma 1

Suppose that this does not hold, and letM be the nonempty set of all i such that
Jiiða*Þvi 5 0. By assumption 3, ifM is not the set of all agents, there is some i ∈ M
and j ∉ M with Jijða*Þ > 0, which implies vj 5 0, a contradiction to the defini-
tion of M. If M is the set of all agents, then let ~J be equal to Jða*; ûÞ with the di-
agonal zeroed out, and note that ~J is an irreducible, nonnegative matrix with
v~J 5 0, again a contradiction (since v was assumed to be nonzero).

Proof of Proposition 5

For j ∈ M , set

mj að Þ 5 v21
j o

i∉M

vi Jij a*ð Þaj :
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One can check that with these payments, the problem of maximizing

o
j∈M

vj ~uj að Þ

has the same first-order conditions evaluated at a* as the planner’s problem in
the grand coalition; these are

o
i ∈N

vi Jij a*ð Þ 5 0

for each j. So the social planner’s problem in groupM, of maximizing the weighted
sum of utilities is solved by a 5 a*. Because the utility functions are concave, the
solution is, indeed, Pareto efficient for a*. The analogous argument holds for M c.
Appendix D

Additional Results

Proposition 7. The following are equivalent: (a) rðBð0ÞÞ ≤ 1; (b) 0 is a Pa-
reto efficient action profile; and (c) 0 is a Lindahl outcome.

Proof. Proposition 1b establishes the equivalence between a and b.
b ⇒ c.—The construction of prices is exactly analogous to the proof of theo-

rem 1; the only difference is that, rather than the Pareto weights, we use Pareto
weights adjusted by the Lagrange multipliers on the binding constraints ai ≥ 0.

c ⇒ b.—The standard proof of the first welfare theorem goes through without
modification; see, for example, Foley (1970). QED
Appendix E

Essential versus Key Players

In this appendix, we compare the concept of a key player from Ballester et al.
(2006) with our concept of essential agents, as defined in Section III.B. Suppose
that there are four agents with the following utility functions:

u1 5 10a3 20:5a2
1 1a1a4,

u2 5 10a1 20:5a2
2 1a2a4,

u3 5 10a2 20:5a2
3 1a3a4,

u4 5 a4 20:5a2
4 :

If all agents take actions greater than zero, these utilities induce the benefits
network shown in figure E1, where an arrow from i to j means ∂uj=∂ai > 0.

It is easy to see that the unique Nash equilibrium is a*1 5 a*2 5 a*3 5 a*4 5 1.
Following the exercise in Ballester et al. (2006), suppose that player 4 is “removed”
from the network, so that player 4 becomes disconnected, providing no benefits to
the other players. Formally, in all utility functions other than that of player 4, the
action a4 is set to zero:
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u1 5 10a3 20:5a2
1 ,

u2 5 10a1 20:5a2
2 ,

u3 5 10a2 20:5a2
3 ,

u4 5 a4 20:5a2
4 :

In this new network, the unique Nash equilibrium is a*1 5 a*2 5 a*3 5 0, while
a*4 5 1. Therefore, the removal of player 4 decreases the actions by all other
players. Suppose instead that player i ≠ 4 were removed. In the network the
unique Nash equilibrium is a*j 5 1 for all j ≠ i and xi 5 0. Thus, the action pro-
file after player 4 is removed is pointwise dominated by the action profile after
any other player is removed. And so aggregate actions decrease the most when
player 4 is removed, which implies that player 4 the key player, as defined by
Ballester et al. (2006).

Consider now whether a Pareto improvement is possible at the Nash equilib-
rium action profile. By proposition 1 this is possible if and only if the spectral
radius of the benefits matrix is greater than 1. In the essential-player exercise,
we remove a player from negotiations by having that player take his status quo
action—in this case, his Nash equilibrium action. Because this player is unable
to provide positive marginal benefits to anyone else, we remove him from the
benefits network when looking for Pareto improvements. In the subnetwork
without player 4, the spectral radius is greater than 1, and so a Pareto improve-
ment is possible and player 4 is not an essential player. However, in the subnet-
work without any player i ≠ 4, the spectral radius is 0, and so a Pareto improve-
ment is not possible. Thus, all players i ≠ 4 are essential.

In summary, player 4 is the key player, while all other players, and not player 4,
are essential. What makes a player “key” in Ballester et al. (2006) is the comple-
mentarity of his action with the actions of others. Player 4 is the only player with
such complementarities, since the other players i ≠ 4 have terms xix4 in their util-
FIG. E1.—The benefits matrix in our example
This content downloaded from 202.120.224.054 on April 20, 2020 20:47:56 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



774 journal of political economy

All
ity functions. In contrast, what makes a player “essential” is his position in cycles
in the benefits network. When any i ≠ 4 is removed, the benefits network has no
cycles, and so such players are essential. In contrast, when player 4 is removed,
there is still a strong cycle among the remaining players in the benefits network.
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